Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2319838121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513093

RESUMO

The evolution of pest resistance to management tools reduces productivity and results in economic losses in agricultural systems. To slow its emergence and spread, monitoring and prevention practices are implemented in resistance management programs. Recent work suggests that genomic approaches can identify signs of emerging resistance to aid in resistance management. Here, we empirically examined the sensitivity of genomic monitoring for resistance management in transgenic Bt crops, a globally important agricultural innovation. Whole genome resequencing of wild North American Helicoverpa zea collected from non-expressing refuge and plants expressing Cry1Ab confirmed that resistance-associated signatures of selection were detectable after a single generation of exposure. Upon demonstrating its sensitivity, we applied genomic monitoring to wild H. zea that survived Vip3A exposure resulting from cross-pollination of refuge plants in seed-blended plots. Refuge seed interplanted with transgenic seed exposed H. zea to sublethal doses of Vip3A protein in corn ears and was associated with allele frequency divergence across the genome. Some of the greatest allele frequency divergence occurred in genomic regions adjacent to a previously described candidate gene for Vip3A resistance. Our work highlights the power of genomic monitoring to sensitively detect heritable changes associated with field exposure to Bt toxins and suggests that seed-blended refuge will likely hasten the evolution of resistance to Vip3A in lepidopteran pests.


Assuntos
Bacillus thuringiensis , Endotoxinas , Animais , Larva/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Bacillus thuringiensis/genética , Polinização , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/metabolismo , Controle Biológico de Vetores/métodos , Resistência a Inseticidas/genética , Genômica , Sementes/metabolismo , Zea mays/genética
2.
J Insect Sci ; 23(4)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527466

RESUMO

The 2021 Student Debates of the Entomological Society of America (ESA) were held at the Annual Meeting in Denver, CO. The event was organized by the Student Debates Subcommittee (SDS) of the Student Affairs Committee (SAC). The theme of the 2021 Student Debates was "Transforming Entomology to Adapt to Global Concerns", with 3 topics. Each topic had an unbiased introduction and 2 teams. The debate topics were (i) Nonnative insect introduction is an ethical approach for counteracting proliferation and overpopulation of consumers, (ii) What is the best technology to control undesirable insect pests in urban and agricultural settings? and (iii) Compared to other solutions, like plant-based diets, insect farming is the best method to address rising human global food and nutrient supply demands. Unbiased introduction speakers and teams had approximately 6 months to prepare for their presentations.


Assuntos
Agricultura , Entomologia , Humanos , Animais , Fazendas , Insetos , Estudantes
3.
Pest Manag Sci ; 79(10): 3493-3503, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37139844

RESUMO

BACKGROUND: Helicoverpa zea, an economic pest in the south-eastern United States, has evolved practical resistance to Bacillus thuringiensis (Bt) Cry toxins in maize and cotton. Insect resistance management (IRM) programs have historically required planting of structured non-Bt maize, but because of its low adoption, the use of seed blends has been considered. To generate knowledge on target pest biology and ecology to help improve IRM strategies, nine field trials were conducted in 2019 and 2020 in Florida, Georgia, North Carolina, and South Carolina to evaluate the impact of Bt (Cry1Ab + Cry1F or Cry1Ab + Cry1F + Vip3A) and non-Bt maize plants in blended and structured refuge treatments on H. zea pupal survival, weight, soil pupation depth, adult flight parameters, and adult time to eclosion. RESULTS: From a very large sample size and geography, we found a significant difference in pupal mortality and weight among treatments in seed blends with Vip3A, implying that cross-pollination occurred between Bt and non-Bt maize ears. There was no treatment effect for pupation depth, adult flight distance, and eclosion time. CONCLUSION: Results of this study demonstrate the potential impact of different refuge strategies on phenological development and survival of an important pest species of regulatory concern. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Estados Unidos , Zea mays/genética , Pupa , Larva , Endotoxinas/farmacologia , Plantas Geneticamente Modificadas/genética , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/genética , Toxinas de Bacillus thuringiensis/farmacologia , Sementes , Resistência a Inseticidas , Bacillus thuringiensis/genética
4.
Front Bioeng Biotechnol ; 10: 886765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586550

RESUMO

Regulation of next-generation crops in the United States under the newly implemented "SECURE" rule promises to diversify innovation in agricultural biotechnology. Specifically, SECURE promises to expand the number of products eligible for regulatory exemption, which proponents theorize will increase the variety of traits, genes, organisms, and developers involved in developing crop biotechnology. However, few data-driven studies have looked back at the history of crop biotechnology to understand how specific regulatory pathways have affected diversity in crop biotechnology and how those patterns might change over time. In this article, we draw upon 30 years of regulatory submission data to 1) understand historical diversification trends across the landscape and history of past crop biotechnology regulatory pathways and 2) forecast how the new SECURE regulations might affect future diversification trends. Our goal is to apply an empirical approach to exploring the relationship between regulation and diversity in crop biotechnology and provide a basis for future data-driven analysis of regulatory outcomes. Based on our analysis, we suggest that diversity in crop biotechnology does not follow a single trajectory dictated by the shifts in regulation, and outcomes of SECURE might be more varied and restrictive despite the revamped exemption categories. In addition, the concept of confidential business information and its relationship to past and future biotechnology regulation is reviewed in light of our analysis.

5.
J Econ Entomol ; 114(3): 1362-1372, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33885759

RESUMO

Stink bugs represent an increasing risk to soybean production in the Midwest region of the United States. The current sampling protocol for stink bugs in this region is tailored for population density estimation and thus is more relevant to research purposes. A practical decision-making framework with more efficient sampling effort for management of herbivorous stink bugs is needed. Therefore, a binomial sequential sampling plan was developed for herbivorous stink bugs in the Midwest region. A total of 146 soybean fields were sampled across 11 states using sweep nets in 2016, 2017, and 2018. The binomial sequential sampling plans were developed using combinations of five tally thresholds at two proportion infested action thresholds to identify those that provided the best sampling outcomes. Final assessment of the operating characteristic curves for each plan indicated that a tally threshold of 3 stink bugs per 25 sweeps, and proportion infested action thresholds of 0.75 and 0.95 corresponding to the action thresholds of 5 and 10 stink bugs per 25 sweeps, provided the optimal balance between highest probability of correct decisions (≥ 99%) and lowest probability of incorrect decisions (≤ 1%). In addition, the average sample size for both plans (18 and 12 sets of 25 sweeps, respectively) was lower than that for the other proposed plans. The binomial sequential sampling plan can reduce the number of sample units required to achieve a management decision, which is important because it can potentially reduce risk/cost of management for stink bugs in soybean in this region.


Assuntos
Heterópteros , Animais , Herbivoria , Densidade Demográfica , Glycine max , Estados Unidos
6.
J Insect Sci ; 20(3)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32365174

RESUMO

Stink bugs (Hemiptera: Pentatomidae) are agricultural pests of increasing significance in the North Central Region of the United States, posing a threat to major crops such as soybean. Biological control can reduce the need for insecticides to manage these pests, but the parasitism of stink bugs by Tachinidae (Diptera) is poorly characterized in this region. The objective of this study was to evaluate the rate of parasitism of stink bugs by tachinids over 2 yr from nine states across the North Central Region. Parasitism was assessed by quantifying tachinid eggs on the integument of stink bug adults. Parasitism rates (i.e., percent of adult stink bugs with tachinid eggs) were compared across stink bug species, states, stink bug sex, and years. The mean percent parasitism of stink bugs by tachinids was about 6% across the region and did not differ among stink bug species. Mean percent parasitism was significantly higher in Missouri than in northern and western states. In addition, male stink bugs had significantly higher mean percent parasitism than females. Stink bug species commonly found in soybean in the region showed some parasitism and are therefore potentially vulnerable to oviposition by these parasitoids. This is the first study to characterize the level of parasitism of stink bugs by tachinids across the North Central Region.


Assuntos
Dípteros/fisiologia , Heterópteros/parasitologia , Interações Hospedeiro-Parasita , Controle de Insetos , Controle Biológico de Vetores , Animais , Produtos Agrícolas/crescimento & desenvolvimento , Feminino , Masculino , Meio-Oeste dos Estados Unidos , Glycine max/crescimento & desenvolvimento
7.
J Econ Entomol ; 113(2): 932-939, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31961438

RESUMO

Soybean aphid, Aphis glycines Matsumura, remains the most economically damaging arthropod pest of soybean in the midwestern United States and southern Canada. Foliar applications of a limited number of insecticide modes of action have been the primary management tactic, and pyrethroid resistance was documented recently with full concentration-response leaf-dip and glass-vial bioassays. Full concentration-response bioassays can be cumbersome, and a more efficient assessment tool was needed. In this study, we implemented a diagnostic-concentration glass-vial bioassay using bifenthrin and λ-cyhalothrin. Bioassays were conducted with field-collected soybean aphid populations to assess the geographic extent and severity of resistance to pyrethroids. In 2017, 10 of 18 and 11 of 21 field populations tested with bifenthrin and λ-cyhalothrin, respectively, had mean proportion mortalities less than the susceptible laboratory population. In 2018, 17 of 23 and 13 of 23 field populations tested with bifenthrin and λ-cyhalothrin, respectively, had mean proportion mortalities less than the susceptible laboratory population. Populations collected after reported field failures of a pyrethroid insecticide generally had mean proportion mortalities less than the susceptible laboratory population. In both years, there was a strong correlation between chemistries, which suggests cross-resistance between these insecticides. The diagnostic-concentration glass-vial bioassays reported here will provide the foundation for an insecticide resistance monitoring program with the ability to determine practical levels and geographic extent of insecticide resistance.


Assuntos
Afídeos/efeitos dos fármacos , Inseticidas/farmacologia , Piretrinas , Animais , Bioensaio , Canadá , Resistência a Inseticidas/efeitos dos fármacos , Meio-Oeste dos Estados Unidos , Glycine max/efeitos dos fármacos
8.
J Econ Entomol ; 112(4): 1722-1731, 2019 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-31038171

RESUMO

Stink bugs (Hemiptera: Pentatomidae) are an increasing threat to soybean (Fabales: Fabaceae) production in the North Central Region of the United States, which accounts for 80% of the country's total soybean production. Characterization of the stink bug community is essential for development of management programs for these pests. However, the composition of the stink bug community in the region is not well defined. This study aimed to address this gap with a 2-yr, 9-state survey. Specifically, we characterized the relative abundance, richness, and diversity of taxa in this community, and assessed phenological differences in abundance of herbivorous and predatory stink bugs. Overall, the stink bug community was dominated by Euschistus spp. (Hemiptera: Pentatomidae) and Chinavia hilaris (Say) (Hemiptera: Pentatomidae). Euschistus variolarius (Palisot de Beauvois) (Hemiptera: Pentatomidae), C. hilaris and Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) were more abundant in the northwestern, southeastern and eastern parts, respectively, of the North Central Region of the United States. Economically significant infestations of herbivorous species occurred in fields in southern parts of the region. Species richness differed across states, while diversity was the same across the region. Herbivorous and predatory species were more abundant during later soybean growth stages. Our results represent the first regional characterization of the stink bug community in soybean fields and will be fundamental for the development of state- and region-specific management programs for these pests in the North Central Region of the United States.


Assuntos
Glycine max , Heterópteros , Animais , Herbivoria , Estados Unidos
9.
J Econ Entomol ; 112(4): 1732-1740, 2019 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-31038178

RESUMO

Stink bugs are an emerging threat to soybean (Fabales: Fabaceae) in the North Central Region of the United States. Consequently, region-specific scouting recommendations for stink bugs are needed. The aim of this study was to characterize the spatial pattern and to develop sampling plans to estimate stink bug population density in soybean fields. In 2016 and 2017, 125 fields distributed across nine states were sampled using sweep nets. Regression analyses were used to determine the effects of stink bug species [Chinavia hilaris (Say) (Hemiptera: Pentatomidae) and Euschistus spp. (Hemiptera: Pentatomidae)], life stages (nymphs and adults), and field locations (edge and interior) on spatial pattern as represented by variance-mean relationships. Results showed that stink bugs were aggregated. Sequential sampling plans were developed for each combination of species, life stage, and location and for all the data combined. Results for required sample size showed that an average of 40-42 sample units (sets of 25 sweeps) would be necessary to achieve a precision of 0.25 for stink bug densities commonly encountered across the region. However, based on the observed geographic gradient of stink bug densities, more practical sample sizes (5-10 sample units) may be sufficient in states in the southeastern part of the region, whereas impractical sample sizes (>100 sample units) may be required in the northwestern part of the region. Our findings provide research-based sampling recommendations for estimating densities of these emerging pests in soybean.


Assuntos
Glycine max , Heterópteros , Animais , Ninfa , Densidade Demográfica , Estados Unidos
10.
Environ Entomol ; 47(4): 812-821, 2018 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-29878176

RESUMO

The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), has spread across North America and is causing serious economic damages. Current management of this pest is based primarily on use of insecticides, which can disrupt integrated pest management programs. Alternatively, biological control is a more benign management tactic. This study provides the first examination of potential impact of parasitoids and predators of pentatomid eggs in Minnesota. Over 2 yr, 10,074 fresh and 9,870 frozen H. halys eggs were deployed in two forest and two soybean habitats in St. Paul, Minnesota from June to August. Our results demonstrate that rates of parasitism and predation were low, accounting for only 0.4 and 3.7%, respectively, across years, habitats, and egg states. In general, the parasitoid Telenomus podisi Ashmead (Hymenoptera: Scelionidae), had higher impacts on H. halys eggs in soybean, and generalist predators were more prevalent in forest habitats. Overall, predation was higher on fresh versus frozen eggs, and parasitism was not consistent across egg states. Although the rates of H. halys mortality due to natural enemies were low, results of our study may be conservative estimates of their true impact. Also, sentinel egg mass surveys should account for undeveloped parasitoids to better quantify H. halys egg mortality by native parasitoids. Alternative management tactics, such as the introduction of Trissolcus japonicus (Ashmead) (Hymenoptera: Scelionidae), could be considered to improve biological control of H. halys. Our findings serve as the foundation for future work on biological control of this pest and other pentatomids.


Assuntos
Cadeia Alimentar , Florestas , Glycine max , Heterópteros/fisiologia , Heterópteros/parasitologia , Animais , Minnesota , Óvulo/parasitologia , Óvulo/fisiologia , Glycine max/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA