Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Doc Ophthalmol ; 145(3): 175-184, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36199003

RESUMO

PURPOSE: To develop and validate a flicker electroretinogram (ERG) protocol in term-born neonates as a potential tool for assessing preterm infants at risk of developing retinopathy of prematurity. METHODS: A custom flicker ERG protocol was developed for use with the hand-held RETeval® electrophysiology device. Feasibility of measuring flicker ERG through closed eyelids and without mydriasis was established in a pilot study enabling optimisation of the test protocol. Following this, healthy term-born neonates (gestational age 37-42 weeks) were recruited at the Neonatology clinic of the University Hospital Zurich. Flicker ERG recordings were performed using proprietary disposable skin electrodes during the first four days of life when the infants were sleeping. Flicker stimuli were presented at 28.3 Hz for a stimulus series at 3, 6, 12, 30, and 50 cd·s/m2, with two measurements at each stimulus level. Results were analysed offline. Flicker ERG peak times and amplitudes were derived from the averaged measurements per stimulus level for each subject. RESULTS: 28 term-born neonates were included in the analysis. All infants tolerated the testing procedure well. Flicker ERG recording was achieved in all subjects with reproducible flicker ERG waveforms for 30 and 50 cd·s/m2 stimuli. Reproducible ERGs were recorded in the majority of infants for the weaker stimuli (with detectable ERGs in 20/28, 25/28, and 27/28 at 3, 6, and 12 cd·s/m2, respectively). Flicker ERG amplitudes increased with increasing stimulus strength, with peak times concurrently decreasing slightly. CONCLUSION: Flicker ERG recording is feasible and reliably recorded in sleeping neonates through closed eyelids using skin electrodes and without mydriasis. Flicker ERG amplitude decreases for lower luminance flicker but remains detectable for 3 cd·s/m2 flicker in the majority of healthy term-born neonates. These data provide a basis to study retinal function in premature infants using this protocol.


Assuntos
Eletrorretinografia , Midríase , Recém-Nascido , Lactente , Humanos , Eletrorretinografia/métodos , Projetos Piloto , Estimulação Luminosa/métodos , Recém-Nascido Prematuro , Retina
2.
Acta Ophthalmol ; 99(4): e594-e607, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32996714

RESUMO

PURPOSE: To (i) describe a series of patients with isolated or syndromic nanophthalmos with the underlying genetic causes, including novel pathogenic variants and their functional characterization and (ii) to study the association of retinal dystrophy in patients with MFRP variants, based on a detailed literature review of genotype-phenotype correlations. METHODS: Patients with nanophthalmos and available family members received a comprehensive ophthalmological examination. Genetic analysis was based on whole-exome sequencing and variant calling in core genes including MFRP, BEST1, TMEM98, PRSS56, CRB1, GJA1, C1QTNF5, MYRF and FAM111A. A minigene assay was performed for functional characterization of a splice site variant. RESULTS: Seven patients, aged between three and 65 years, from five unrelated families were included. Novel pathogenic variants in MFRP (c.497C>T, c.899-3C>A, c.1180G>A), and PRSS56 (c.1202C>A), and a recurrent de novo variant in FAM111A (c.1706G>A) in a patient with Kenny-Caffey syndrome type 2, were identified. In addition, we report co-inheritance of MFRP-related nanophthalmos and ADAR-related Aicardi-Goutières syndrome. CONCLUSION: Nanophthalmos is a genetically heterogeneous condition, and the severity of ocular manifestations appears not to correlate with variants in a specific gene. However, retinal dystrophy is only observed in patients harbouring pathogenic MFRP variants. Furthermore, heterozygous carriers of MFRP and PRSS56 should be screened for the presence of high hyperopia. Identifying nanophthalmos as an isolated condition or as part of a syndrome has implications for counselling and can accelerate the interdisciplinary care of patients.


Assuntos
DNA/genética , Proteínas de Membrana/genética , Microftalmia/genética , Mutação , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Testes Genéticos , Humanos , Masculino , Proteínas de Membrana/metabolismo , Microftalmia/metabolismo , Pessoa de Meia-Idade , Linhagem , Fenótipo , Adulto Jovem
3.
J Physiol ; 591(19): 4689-98, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23940380

RESUMO

Two-photon calcium imaging in awake, head-fixed animals enables the measurement of neuronal activity during behaviour. Often, licking for the retrieval of water reward is used as a measurable report of the animal's decision during reward-driven behaviour. However, licking behaviour can induce severe motion artifacts that interfere with two-photon imaging of cellular activity. Here, we describe a simple method for the online correction of licking-induced focus shifts for two-photon calcium imaging of neocortical neurons in the head-fixed mouse. We found that licking causes a stereotyped drop of neocortical tissue, shifting neurons up to 20 µm out of focus. Based on the measurement of licking with a piezo film sensor, we developed a feedback model, which provides a corrective signal for fast optical focus adjustments with an electrically tunable lens. Using online correction with this feedback model, we demonstrate a reduction of licking-related focus changes below 3 µm, minimizing motion artifact contamination of cellular calcium signals. Focus correction with a tunable lens is a simple and effective method to improve the ability to monitor neuronal activity during reward-based behaviour.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Movimento (Física) , Neocórtex/fisiologia , Animais , Artefatos , Comportamento Animal , Sinalização do Cálcio , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Imagem Óptica/métodos , Recompensa
4.
J Neurosci Methods ; 215(1): 38-52, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23416135

RESUMO

Intravital microscopy such as in vivo imaging of brain dynamics is often performed with custom-built microscope setups controlled by custom-written software to meet specific requirements. Continuous technological advancement in the field has created a need for new control software that is flexible enough to support the biological researcher with innovative imaging techniques and provide the developer with a solid platform for quickly and easily implementing new extensions. Here, we introduce HelioScan, a software package written in LabVIEW, as a platform serving this dual role. HelioScan is designed as a collection of components that can be flexibly assembled into microscope control software tailored to the particular hardware and functionality requirements. Moreover, HelioScan provides a software framework, within which new functionality can be implemented in a quick and structured manner. A specific HelioScan application assembles at run-time from individual software components, based on user-definable configuration files. Due to its component-based architecture, HelioScan can exploit synergies of multiple developers working in parallel on different components in a community effort. We exemplify the capabilities and versatility of HelioScan by demonstrating several in vivo brain imaging modes, including camera-based intrinsic optical signal imaging for functional mapping of cortical areas, standard two-photon laser-scanning microscopy using galvanometric mirrors, and high-speed in vivo two-photon calcium imaging using either acousto-optic deflectors or a resonant scanner. We recommend HelioScan as a convenient software framework for the in vivo imaging community.


Assuntos
Microscopia/instrumentação , Microscopia/métodos , Neuroimagem/instrumentação , Neuroimagem/métodos , Software , Animais , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Cálcio/química , Simulação por Computador , Sistemas Computacionais , Computadores , Interpretação Estatística de Dados , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia Confocal , Microscopia de Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA