Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34831029

RESUMO

Background: Although several approaches have revealed much about individual factors that regulate pancreatic development, we have yet to fully understand their complicated interplay during pancreas morphogenesis. Gfi1 is transcription factor specifically expressed in pancreatic acinar cells, whose role in pancreas cells fate identity and specification is still elusive. Methods: In order to gain further insight into the function of this factor in the pancreas, we generated animals deficient for Gfi1 specifically in the pancreas. Gfi1 conditional knockout animals were phenotypically characterized by immunohistochemistry, RT-qPCR, and RNA scope. To assess the role of Gfi1 in the pathogenesis of diabetes, we challenged Gfi1-deficient mice with two models of induced hyperglycemia: long-term high-fat/high-sugar feeding and streptozotocin injections. Results: Interestingly, mutant mice did not show any obvious deleterious phenotype. However, in depth analyses demonstrated a significant decrease in pancreatic amylase expression, leading to a diminution in intestinal carbohydrates processing and thus glucose absorption. In fact, Gfi1-deficient mice were found resistant to diet-induced hyperglycemia, appearing normoglycemic even after long-term high-fat/high-sugar diet. Another feature observed in mutant acinar cells was the misexpression of ghrelin, a hormone previously suggested to exhibit anti-apoptotic effects on ß-cells in vitro. Impressively, Gfi1 mutant mice were found to be resistant to the cytotoxic and diabetogenic effects of high-dose streptozotocin administrations, displaying a negligible loss of ß-cells and an imperturbable normoglycemia. Conclusions: Together, these results demonstrate that Gfi1 could turn to be extremely valuable for the development of new therapies and could thus open new research avenues in the context of diabetes research.


Assuntos
Proteínas de Ligação a DNA/deficiência , Diabetes Mellitus/metabolismo , Diabetes Mellitus/prevenção & controle , Fatores de Transcrição/deficiência , Células Acinares/citologia , Células Acinares/metabolismo , Amilases/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Grelina/metabolismo , Proteínas de Homeodomínio/metabolismo , Hiperglicemia/complicações , Hiperglicemia/genética , Integrases/metabolismo , Camundongos Transgênicos , Mutação/genética , Pâncreas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Turk J Chem ; 44(4): 859-883, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488199

RESUMO

A review of the studies dealing with the removal of chromium, cadmium, and nickel ions with different adsorbents published in the literature between 2014 and 2018 is given in tabular form, along with the adsorption conditions, adsorption isotherm, and kinetic models applied by the authors to model the experimental data and adsorption capacities. The review focuses on the efficiency of ion removal.

3.
Sci Rep ; 8(1): 256, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321503

RESUMO

CSF-1 and IL-34 share the CSF-1 receptor and no differences have been reported in the signaling pathways triggered by both ligands in human monocytes. IL-34 promotes the differentiation and survival of monocytes, macrophages and osteoclasts, as CSF-1 does. However, IL-34 binds other receptors, suggesting that differences exist in the effect of both cytokines. In the present study, we compared the differentiation and polarization abilities of human primary monocytes in response to CSF-1 or IL-34. CSF-1R engagement by one or the other ligands leads to AKT and caspase activation and autophagy induction through expression and activation of AMPK and ULK1. As no differences were detected on monocyte differentiation, we investigated the effect of CSF-1 and IL-34 on macrophage polarization into the M1 or M2 phenotype. We highlighted a striking increase in IL-10 and CCL17 secretion in M1 and M2 macrophages derived from IL-34 stimulated monocytes, respectively, compared to CSF-1 stimulated monocytes. Variations in the secretome induced by CSF-1 or IL-34 may account for their different ability to polarize naïve T cells into Th1 cells. In conclusion, our findings indicate that CSF-1 and IL-34 exhibit the same ability to induce human monocyte differentiation but may have a different ability to polarize macrophages.


Assuntos
Diferenciação Celular , Interleucinas/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Humanos , Interleucinas/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/imunologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Cell ; 168(1-2): 73-85.e11, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-27916274

RESUMO

The recent discovery that genetically modified α cells can regenerate and convert into ß-like cells in vivo holds great promise for diabetes research. However, to eventually translate these findings to human, it is crucial to discover compounds with similar activities. Herein, we report the identification of GABA as an inducer of α-to-ß-like cell conversion in vivo. This conversion induces α cell replacement mechanisms through the mobilization of duct-lining precursor cells that adopt an α cell identity prior to being converted into ß-like cells, solely upon sustained GABA exposure. Importantly, these neo-generated ß-like cells are functional and can repeatedly reverse chemically induced diabetes in vivo. Similarly, the treatment of transplanted human islets with GABA results in a loss of α cells and a concomitant increase in ß-like cell counts, suggestive of α-to-ß-like cell conversion processes also in humans. This newly discovered GABA-induced α cell-mediated ß-like cell neogenesis could therefore represent an unprecedented hope toward improved therapies for diabetes.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Células Secretoras de Glucagon/citologia , Células Secretoras de Insulina/citologia , Ácido gama-Aminobutírico/administração & dosagem , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus/induzido quimicamente , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Células Secretoras de Glucagon/efeitos dos fármacos , Humanos , Ilhotas Pancreáticas/citologia , Masculino , Camundongos , Proteínas do Tecido Nervoso , Ratos , Ratos Wistar , Ácido gama-Aminobutírico/farmacologia
5.
Autophagy ; 11(7): 1114-29, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029847

RESUMO

Autophagy is induced during differentiation of human monocytes into macrophages that is mediated by CSF1/CSF-1/M-CSF (colony stimulating factor 1 [macrophage]). However, little is known about the molecular mechanisms that link CSF1 receptor engagement to the induction of autophagy. Here we show that the CAMKK2-PRKAA1-ULK1 pathway is required for CSF1-induced autophagy and human monocyte differentiation. We reveal that this pathway links P2RY6 to the induction of autophagy, and we decipher the signaling network that links the CSF1 receptor to P2RY6-mediated autophagy and monocyte differentiation. In addition, we show that the physiological P2RY6 ligand UDP and the specific P2RY6 agonist MRS2693 can restore normal monocyte differentiation through reinduction of autophagy in primary myeloid cells from some but not all chronic myelomonocytic leukemia (CMML) patients. Collectively, our findings highlight an essential role for PRKAA1-mediated autophagy during differentiation of human monocytes and pave the way for future therapeutic interventions for CMML.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Leucemia Mieloide/patologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Monócitos/citologia , Transdução de Sinais/efeitos dos fármacos , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Humanos , Leucemia Mieloide/enzimologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fosfolipase C gama/metabolismo , Receptores Purinérgicos P2/metabolismo , Difosfato de Uridina/farmacologia
6.
Curr Top Dev Biol ; 106: 217-38, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24290351

RESUMO

Type 1 diabetes is a metabolic disease resulting in the selective loss of pancreatic insulin-producing ß-cells and affecting millions of people worldwide. The side effects of diabetes are varied and include cardiovascular, neuropathologic, and kidney diseases. Despite the most recent advances in diabetes care, patients suffering from type 1 diabetes still display a shortened life expectancy compared to their healthy counterparts. In an effort to improve ß-cell-replacement therapies, numerous approaches are currently being pursued, most of these aiming at finding ways to differentiate stem/progenitor cells into ß-like cells by mimicking embryonic development. Unfortunately, these efforts have hitherto not allowed the generation of fully functional ß-cells. This chapter summarizes recent findings, allowing a better insight into the molecular mechanisms underlying the genesis of ß-cells during the course of pancreatic morphogenesis. Furthermore, a focus is made on new research avenues concerning the conversion of pre-existing pancreatic cells into ß-like cells, such approaches holding great promise for the development of type 1 diabetes therapies.


Assuntos
Células-Tronco Embrionárias/fisiologia , Células Secretoras de Insulina/fisiologia , Pâncreas/embriologia , Regeneração , Animais , Desdiferenciação Celular/fisiologia , Diferenciação Celular/fisiologia , Diabetes Mellitus Tipo 1/cirurgia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/transplante , Pâncreas/citologia , Pâncreas/crescimento & desenvolvimento , Medicina Regenerativa/métodos
7.
PLoS Genet ; 9(10): e1003934, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204325

RESUMO

Recently, it was demonstrated that pancreatic new-born glucagon-producing cells can regenerate and convert into insulin-producing ß-like cells through the ectopic expression of a single gene, Pax4. Here, combining conditional loss-of-function and lineage tracing approaches, we show that the selective inhibition of the Arx gene in α-cells is sufficient to promote the conversion of adult α-cells into ß-like cells at any age. Interestingly, this conversion induces the continuous mobilization of duct-lining precursor cells to adopt an endocrine cell fate, the glucagon(+) cells thereby generated being subsequently converted into ß-like cells upon Arx inhibition. Of interest, through the generation and analysis of Arx and Pax4 conditional double-mutants, we provide evidence that Pax4 is dispensable for these regeneration processes, indicating that Arx represents the main trigger of α-cell-mediated ß-like cell neogenesis. Importantly, the loss of Arx in α-cells is sufficient to regenerate a functional ß-cell mass and thereby reverse diabetes following toxin-induced ß-cell depletion. Our data therefore suggest that strategies aiming at inhibiting the expression of Arx, or its molecular targets/co-factors, may pave new avenues for the treatment of diabetes.


Assuntos
Diferenciação Celular , Diabetes Mellitus Tipo 1/genética , Proteínas de Homeodomínio/genética , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição/genética , Animais , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/terapia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glucagon/genética , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Glucagon/patologia , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/biossíntese , Humanos , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Camundongos Transgênicos , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/biossíntese
8.
Med Sci (Paris) ; 29(8-9): 749-55, 2013.
Artigo em Francês | MEDLINE | ID: mdl-24005630

RESUMO

Type 1 diabetes (T1DM) is a common metabolic disorder affecting an ever-increasing number of patients worldwide. T1DM is caused by the selective destruction of pancreatic insulin-producing ß-cells by the immune system. Such loss results in chronic hyperglycemia and could induce a number of cardio-vascular complications. Despite the classical insulin-based therapy, compared to healthy people, patients with T1DM display a shortened life expectancy due to the treatment's inability to strictly regulate glycemic levels. An alternative therapy involves pancreatic islet transplantation but the shortage of donors and the required immuno-suppressive treatments limit the widespread use of this approach. Therefore, the search of new approaches to generate functional ß-cells is of growing interest. In this review, we describe several novel strategies aiming at the conversion of diverse pancreatic cells into ß-cells, such as acinar, ductal, and endocrine cells. Clearly, such promising results could open new research avenues in the context of type 1 diabetes research.


Assuntos
Diferenciação Celular , Diabetes Mellitus Tipo 1/terapia , Células Secretoras de Insulina/citologia , Pâncreas/citologia , Células Acinares/citologia , Diabetes Mellitus Tipo 1/cirurgia , Humanos , Células Secretoras de Insulina/fisiologia , Transplante das Ilhotas Pancreáticas , Ductos Pancreáticos/citologia , Regeneração , Doadores de Tecidos/provisão & distribuição
10.
Dev Cell ; 26(1): 86-100, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23810513

RESUMO

It was recently demonstrated that embryonic glucagon-producing cells in the pancreas can regenerate and convert into insulin-producing ß-like cells through the constitutive/ectopic expression of the Pax4 gene. However, whether α cells in adult mice display the same plasticity is unknown. Similarly, the mechanisms underlying such reprogramming remain unclear. We now demonstrate that the misexpression of Pax4 in glucagon(+) cells age-independently induces their conversion into ß-like cells and their glucagon shortage-mediated replacement, resulting in islet hypertrophy and in an unexpected islet neogenesis. Combining several lineage-tracing approaches, we show that, upon Pax4-mediated α-to-ß-like cell conversion, pancreatic duct-lining precursor cells are continuously mobilized, re-express the developmental gene Ngn3, and successively adopt a glucagon(+) and a ß-like cell identity through a mechanism involving the reawakening of the epithelial-to-mesenchymal transition. Importantly, these processes can repeatedly regenerate the whole ß cell mass and thereby reverse several rounds of toxin-induced diabetes, providing perspectives to design therapeutic regenerative strategies.


Assuntos
Reprogramação Celular , Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Glicemia/análise , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Diabetes Mellitus Experimental/genética , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Glucagon/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipertrofia/metabolismo , Hipertrofia/patologia , Células Secretoras de Insulina/patologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Ductos Pancreáticos/efeitos dos fármacos , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , Estreptozocina
11.
Diabetes Res Clin Pract ; 101(1): 1-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23380136

RESUMO

Diabetes mellitus represents a major healthcare burden and, due to the increasing prevalence of type I diabetes and the complications arising from current treatments, other alternative therapies must be found. Type I diabetes arises as a result of a cell-mediated autoimmune destruction of insulin producing pancreatic ß-cells. Thus, a cell replacement therapy would be appropriate, using either in vitro or in vivo cell differentiation/reprogramming from different cell sources. Increasing our understanding of the molecular mechanisms controlling endocrine cell specification during pancreas morphogenesis and gaining further insight into the complex transcriptional network and signaling pathways governing ß-cell development should facilitate efforts to achieve this ultimate goal, that is to regenerate insulin-producing ß-cells. This review will therefore describe briefly the genetic program underlying mouse pancreas development and present new insights regarding ß-cell regeneration.


Assuntos
Reprogramação Celular , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Regeneração/fisiologia , Animais , Humanos , Ilhotas Pancreáticas/fisiologia , Camundongos
12.
PLoS One ; 7(11): e49551, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166709

RESUMO

BACKGROUND: The a2 mating type locus gene lga2 is critical for uniparental mitochondrial DNA inheritance during sexual development of Ustilago maydis. Specifically, the absence of lga2 results in biparental inheritance, along with efficient transfer of intronic regions in the large subunit rRNA gene between parental molecules. However, the underlying role of the predicted LAGLIDADG homing endonuclease gene I-UmaI located within the group II intron LRII1 has remained unresolved. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the enzymatic activity of I-UmaI in vitro based on expression of a tagged full-length and a naturally occurring mutant derivative, which harbors only the N-terminal LAGLIDADG domain. This confirmed Mg²âº-dependent endonuclease activity and cleavage at the LRII1 insertion site to generate four base pair extensions with 3' overhangs. Specifically, I-UmaI recognizes an asymmetric DNA sequence with a minimum length of 14 base pairs (5'-GACGGGAAGACCCT-3') and tolerates subtle base pair substitutions within the homing site. Enzymatic analysis of the mutant variant indicated a correlation between the activity in vitro and intron homing. Bioinformatic analyses revealed that putatively functional or former functional I-UmaI homologs are confined to a few members within the Ustilaginales and Agaricales, including the phylogenetically distant species Lentinula edodes, and are linked to group II introns inserted into homologous positions in the LSU rDNA. CONCLUSIONS/SIGNIFICANCE: The present data provide strong evidence that intron homing efficiently operates under conditions of biparental inheritance in U. maydis. Conversely, uniparental inheritance may be critical to restrict the transmission of mobile introns. Bioinformatic analyses suggest that I-UmaI-associated introns have been acquired independently in distant taxa and are more widespread than anticipated from available genomic data.


Assuntos
Endonucleases/genética , Íntrons , RNA Ribossômico , RNA , Ustilago/genética , Endonucleases/metabolismo , Ativação Enzimática , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Ordem dos Genes , Genes Mitocondriais , Domínios e Motivos de Interação entre Proteínas , RNA Mitocondrial , Especificidade por Substrato , Transcrição Gênica , Ustilago/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA