RESUMO
Mobile applications have been shown to be an effective and feasible intervention medium for improving healthy food intake in different target groups. As part of the PeRsOnalized nutriTion for hEalthy livINg (PROTEIN) European Union H2020 project, the PROTEIN mobile application was developed as an end-user environment, aiming to facilitate healthier lifestyles through artificial intelligence (AI)-based personalised dietary and physical activity recommendations. Recommendations were generated by an AI advisor for different user groups, combining users' personal information and preferences with a custom knowledge-based system developed by experts to create personalised, evidence-based nutrition and activity plans. The PROTEIN app was piloted across different user groups in five European countries (Belgium, Germany, Greece, Portugal, and the United Kingdom). Data from the PROTEIN app's user database (n = 579) and the PROTEIN end-user questionnaire (n = 446) were analysed using the chi-square test of independence to identify associations between personal goals, meal recommendations, and meal adherence among different gender, age, and user groups. The results indicate that weight loss-related goals are more prevalent, as well as more engaging, across all users. Health- and physical activity-related goals are key for increased meal adherence, with further differentiation evident between age and user groups. Congruency between user groups and their respective goals is also important for increased meal adherence. Our study outcomes, and the overall research framework created by the PROTEIN project, can be used to inform the future development of nutrition mobile applications and enable researchers and application designers/developers to better address personalisation for specific user groups, with a focus on user intent, as well as in-app features.
RESUMO
Despite beneficial cardiovascular effects, substantial long-term modulation of food pattern could only be achieved in a limited number of participants. The impact of attitude towards healthy nutrition (ATHN) on successful modulation of dietary behavior is unclear, especially in the elderly. We aimed to analyze whether the personal ATHN influences 12-month adherence to two different dietary intervention regimes within a 36-month randomized controlled trial. METHODS: 502 subjects were randomized to an intervention group (IG; dietary pattern focused on high intake of unsaturated fatty acids (UFA), plant protein and fiber) or control group (CG; dietary recommendation in accordance with the German Society of Nutrition) within a 36-month dietary intervention trial. Sum scores for effectiveness, appreciation and practice of healthy nutrition were assessed using ATHN questionnaire during the trial (n = 344). Linear regression models were used to investigate associations between ATHN and dietary patterns at baseline and at month 12. RESULTS: Retirement, higher education level, age and lower body mass index (BMI) were associated with higher ATHN sum scores. ATHN was similar in CG and IG. Higher baseline intake of polyunsaturated fatty acids (PUFA) and fiber as well as lower intake in saturated fatty acids (SFA) were associated with higher scores in practice in both groups. The intervention resulted in a stronger increase of UFA, protein and fiber in the IG after 12 months, while intake of SFA declined (p < 0.01). Higher scores in appreciation were significantly associated with higher intake of fiber and lower intake of SFA in the CG at month 12, whereas no associations between ATHN and macronutrient intake were observed in the IG after 12 months. CONCLUSIONS: While ATHN appeared to play a role in general dietary behavior, ATHN did not affect the success of the specific dietary intervention in the IG at month 12. Thus, the dietary intervention achieved a substantial modification of dietary pattern in the IG and was effective to override the impact of the individual ATHN on dietary behavior.
Assuntos
Dieta Saudável , Dieta Rica em Proteínas , Ácidos Graxos Insaturados , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Dieta Saudável/psicologia , Dieta Saudável/métodos , Ácidos Graxos Insaturados/administração & dosagem , Cooperação do Paciente , Fibras na Dieta/administração & dosagem , Comportamento Alimentar/psicologia , Gorduras Insaturadas na Dieta/administração & dosagem , Inquéritos e Questionários , Proteínas Alimentares/administração & dosagem , Índice de Massa CorporalRESUMO
The prevalence of obesity globally has tripled over the last half century, and currently affects around 650 million adults and 340 million children and adolescents (ages 5-19 years). Obesity contributes towards >50 co-morbidities and premature mortality. Obesity is a highly stigmatised condition that is associated with much mental and emotional distress and dysfunction. Thus, obesity is a major contributor to healthcare expenditure globally. Traditionally, the management of obesity stratifies into three major groups that include metabolic (bariatric) surgery, pharmacotherapies, and lifestyle (primarily dietary) strategies. Although listed as a separate category, dietary strategies for obesity remain a central component of any management plan, and often complement other surgical and pharmacotherapeutic options. Indeed, the effectiveness of any management approach for obesity relies upon successful behavioural changes, particularly relating to eating behaviours. In this concise review, we explore the foundational pillars of dietary strategies for obesity: sleep, listening, routine, de-stressing and optimisation of social conditions. We then discuss the importance of balancing dietary macronutrients (including dietary fibre, carbohydrates, protein and ultra-processed foods [UPFs]) as a key dietary strategy for obesity. Although we focus on general principles, we should provide bespoke dietary strategies for our patients, tailored to their individual needs. Rather than judging the utility of a diet based simply on its associated magnitude of weight loss, we should adopt a more holistic perspective in which a dietary strategy is valued for its overall health benefits, including the nurturing of our gut microbiota, to enable them to nurture and protect us.
Assuntos
Estilo de Vida , Obesidade , Humanos , Adolescente , Dieta , Comportamento Alimentar , Criança , Sono , Adulto , Redução de Peso , Dieta Saudável , Adulto JovemRESUMO
Lifestyle interventions can prevent type 2 diabetes (T2DM). However, some individuals do not experience anticipated improvements despite weight loss. Biomarkers to identify such individuals at early stages are lacking. Insulin-like growth factor 1 (IGF- 1) and Insulin-like growth factor binding protein 1(IGFBP-1) were shown to predict T2DM onset in prediabetes. We assessed whether these markers also predict the success of lifestyle interventions, thereby possibly guiding personalized strategies. We analyzed the fasting serum levels of IGF-1, IGFBP-1, and Insulin-like growth factor binding protein 2 (IGFBP-2) in relation to changes in metabolic and anthropometric parameters, including intrahepatic lipids (IHLs) and visceral adipose tissue (VAT) volume, measured by magnetic resonance imaging (MRI), in 345 participants with a high risk for prediabetes (54% female; aged 36-80 years). Participants were enrolled in three randomized dietary intervention trials and assessed both at baseline and one year post-intervention. Statistical analyses were performed using IBM SPSS Statistics (version 28), and significance was set at p < 0.05. Within the 1-year intervention, overall significant improvements were observed. Stratifying individuals by baseline IGF-1 and IGFBP-1 percentiles revealed significant differences: higher IGF-1 levels were associated with more favorable changes compared to lower levels, especially in VAT and IHL. Lower baseline IGFBP-1 levels were associated with greater improvements, especially in IHL and 2 h glucose. Higher bioactive IGF-1 levels might predict better metabolic outcomes following lifestyle interventions in prediabetes, potentially serving as biomarkers for personalized interventions.
Assuntos
Biomarcadores , Diabetes Mellitus Tipo 2 , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina , Fator de Crescimento Insulin-Like I , Estilo de Vida , Humanos , Feminino , Masculino , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Pessoa de Meia-Idade , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/análise , Idoso , Adulto , Diabetes Mellitus Tipo 2/sangue , Biomarcadores/sangue , Idoso de 80 Anos ou mais , Estado Pré-Diabético/sangue , Estado Pré-Diabético/terapia , Gordura Intra-Abdominal/metabolismo , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/sangueRESUMO
Aging is associated with a decline in physiological functions and an increased risk of age-related diseases, emphasizing the importance of identifying dietary strategies for healthy aging. Minerals play a crucial role in maintaining optimal health during aging, making them relevant targets for investigation. Therefore, we aimed to analyze the effect of different dietary pattern on mineral status in the elderly. We included 502 individuals aged 50-80 years in a 36-month randomized controlled trial (RCT) (NutriAct study). This article focuses on the results within the two-year intervention period. NutriAct is not a mineral-modulating-targeted intervention study, rather examining nutrition in the context of healthy aging in general. However, mineral status might be affected in an incidental manner. Participants were assigned to either NutriAct dietary pattern (proportionate intake of total energy consumption (%E) of 35-45â¯%E carbohydrates, 35-40â¯%E fats, and 15-25â¯%E protein) or the German Nutrition Society (DGE) dietary pattern (proportionate intake of total energy consumption (%E) of 55â¯%E carbohydrates, 30â¯%E fats, and 15â¯%E protein), differing in the composition of macronutrients. Data from 368 participants regarding dietary intake (energy, calcium, magnesium, iron, and zinc) and serum mineral concentrations of calcium, magnesium, iron, copper, zinc, selenium, iodine, and manganese, free zinc, and selenoprotein P were analyzed at baseline, as well as after 12 and 24 months to gain comprehensive insight into the characteristics of the mineral status. Additionally, inflammatory status - sensitive to changes in mineral status - was assessed by measurement of C-reactive protein and interleukin-6. At baseline, inadequate dietary mineral intake and low serum concentrations of zinc and selenium were observed in both dietary patterns. Throughout two years, serum zinc concentrations decreased, while an increase of serum selenium, manganese and magnesium concentrations was observable, likely influenced by both dietary interventions. No significant changes were observed for serum calcium, iron, copper, or iodine concentrations. In conclusion, long-term dietary interventions can influence serum mineral concentrations in a middle-aged population. Our findings provide valuable insights into the associations between dietary habits, mineral status, and disease, contributing to dietary strategies for healthy aging.
Assuntos
Dieta , Envelhecimento Saudável , Minerais , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alemanha , Envelhecimento Saudável/sangue , Minerais/sangue , Estado NutricionalRESUMO
The increasing prevalence of 'diabesity', a combination of type 2 diabetes and obesity, poses a significant global health challenge. Unhealthy lifestyle factors, including poor diet, sedentary behaviour, and high stress levels, combined with genetic and epigenetic factors, contribute to the diabesity epidemic. Diabesity leads to various significant complications such as cardiovascular diseases, stroke, and certain cancers. Incretin-based therapies, such as GLP-1 receptor agonists and dual hormone therapies, have shown promising results in improving glycaemic control and inducing weight loss. However, these therapies also come with certain disadvantages, including potential withdrawal effects. This review aims to provide insights into the cross-interactions of insulin, glucagon, and GLP-1, revealing the complex hormonal dynamics during fasting and postprandial states, impacting glucose homeostasis, energy expenditure, and other metabolic functions. Understanding these hormonal interactions may offer novel hypotheses in the development of 'anti-diabesity' treatment strategies. The article also explores the question of the antagonism of insulin and glucagon, providing insights into the potential synergy and hormonal overlaps between these hormones.
RESUMO
We assessed the effect of a dietary pattern rich in unsaturated fatty acids (UFA), protein and fibers, without emphasizing energy restriction, on visceral adipose tissue (VAT) and cardiometabolic risk profile. Within the 36-months randomized controlled NutriAct trial, we randomly assigned 502 participants (50-80 years) to an intervention or control group (IG, CG). The dietary pattern of the IG includes high intake of mono-/polyunsaturated fatty acids (MUFA/PUFA 15-20% E/10-15% E), predominantly plant protein (15-25% E) and fiber (≥30 g/day). The CG followed usual care with intake of 30% E fat, 55% E carbohydrates and 15% E protein. Here, we analyzed VAT in a subgroup of 300 participants via MRI at baseline and after 12 months, and performed further metabolic phenotyping. A small but comparable BMI reduction was seen in both groups (mean difference IG vs. CG: -0.216 kg/m2 [-0.477; 0.045], partial η2 = 0.009, p = 0.105). VAT significantly decreased in the IG but remained unchanged in the CG (mean difference IG vs. CG: -0.162 L [-0.314; -0.011], partial η2 = 0.015, p = 0.036). Change in VAT was mediated by an increase in PUFA intake (ß = -0.03, p = 0.005) and induced a decline in LDL cholesterol (ß = 0.11, p = 0.038). The NutriAct dietary pattern, particularly due to high PUFA content, effectively reduces VAT and cardiometabolic risk markers, independent of body weight loss.
Assuntos
Doenças Cardiovasculares , Gordura Intra-Abdominal , Humanos , LDL-Colesterol , Padrões Dietéticos , Ácidos Graxos Insaturados , Doenças Cardiovasculares/prevenção & controleRESUMO
The rising phenomenon of obesity, a major risk factor for the development and progression of type 2 diabetes, is a complex and multifaceted issue that requires a comprehensive and coordinated approach to be prevented and managed. Although novel pharmacological measures to combat obesity have achieved unprecedented efficacy, a healthy lifestyle remains essential for the long-term success of any therapeutic intervention. However, this requires a high level of intrinsic motivation and continued behavioural changes in the face of multiple metabolic, psychological and environmental factors promoting weight gain, particularly in the context of type 2 diabetes. This review is intended to provide practical recommendations in the context of a holistic, person-centred approach to weight management, including evidence-based and expert recommendations addressing supportive communication, shared decision-making, as well as nutritional and pharmacological therapeutic approaches to achieve sustained weight loss.
Assuntos
Diabetes Mellitus Tipo 2 , Obesidade , Humanos , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/complicações , Obesidade/terapia , Obesidade/complicações , Redução de Peso , Estilo de Vida SaudávelRESUMO
SCOPE: Secretion of the gut hormones glucagon-like peptide (GLP-1) and peptide YY (PYY) are induced by nutrients reaching the lower small intestine which regulate insulin and glucagon release, inhibit appetite, and may improve ß-cell regeneration. The aim is to test the effect of a slowly digested isomaltulose (ISO) compared to the rapidly digested saccharose (SAC) as a snack given 1 h before a standardized mixed meal test (MMT) on GLP-1, PYY, glucose-dependent insulinotropic peptide (GIP), and metabolic responses in participants with or without type 2 diabetes (T2DM). METHODS AND RESULTS: Fifteen healthy volunteers and 15 patients with T2DM consumed either 50 g ISO or SAC 1 h preload of MMT on nonconsecutive days. Clinical parameters and incretin hormones are measured throughout the whole course of MMT. Administration of 50 g ISO as compared to SAC induced a significant increase in GLP-1, GIP, and PYY responses over 2 h after intake of a typical lunch in healthy controls. Patients with T2DM showed reduced overall responses of GLP-1 and delayed insulin release compared to controls while ISO significantly enhanced the GIP and almost tripled the PYY response compared to SAC. CONCLUSION: A snack containing ISO markedly enhances the release of the metabolically advantageous gut hormones PYY and GLP-1 and enhances GIP release in response to a subsequent complex meal.
Assuntos
Diabetes Mellitus Tipo 2 , Hormônios Gastrointestinais , Isomaltose/análogos & derivados , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon , Insulina/metabolismo , Polipeptídeo Inibidor Gástrico , Peptídeo YY , Glicemia/metabolismoRESUMO
BACKGROUND: Remission of type 2 diabetes can occur as a result of weight loss and is characterised by liver fat and pancreas fat reduction and recovered insulin secretion. In this analysis, we aimed to investigate the mechanisms of weight loss- induced remission in people with prediabetes. METHODS: In this prespecified post-hoc analysis, weight loss-induced resolution of prediabetes in the randomised, controlled, multicentre Prediabetes Lifestyle Intervention Study (PLIS) was assessed, and the results were validated against participants from the Diabetes Prevention Program (DPP) study. For PLIS, between March 1, 2012, and Aug 31, 2016, participants were recruited from eight clinical study centres (including seven university hospitals) in Germany and randomly assigned to receive either a control intervention, a standard lifestyle intervention (ie, DPP-based intervention), or an intensified lifestyle intervention for 12 months. For DPP, participants were recruited from 23 clinical study centres in the USA between July 31, 1996, and May 18, 1999, and randomly assigned to receive either a standard lifestyle intervention, metformin, or placebo. In both PLIS and DPP, only participants who were randomly assigned to receive lifestyle intervention or placebo and who lost at least 5% of their bodyweight were included in this analysis. Responders were defined as people who returned to normal fasting plasma glucose (FPG; <5·6 mmol/L), normal glucose tolerance (<7·8 mmol/L), and HbA1c less than 39 mmol/mol after 12 months of lifestyle intervention or placebo or control intervention. Non-responders were defined as people who had FPG, 2 h glucose, or HbA1c more than these thresholds. The main outcomes for this analysis were insulin sensitivity, insulin secretion, visceral adipose tissue (VAT), and intrahepatic lipid content (IHL) and were evaluated via linear mixed models. FINDINGS: Of 1160 participants recruited to PLIS, 298 (25·7%) had weight loss of 5% or more of their bodyweight at baseline. 128 (43%) of 298 participants were responders and 170 (57%) were non-responders. Responders were younger than non-responders (mean age 55·6 years [SD 9·9] vs 60·4 years [8·6]; p<0·0001). The DPP validation cohort included 683 participants who lost at least 5% of their bodyweight at baseline. Of these, 132 (19%) were responders and 551 (81%) were non-responders. In PLIS, BMI reduction was similar between responders and non-responders (responders mean at baseline 32·4 kg/m2 [SD 5·6] to mean at 12 months 29·0 kg/m2 [4·9] vs non-responders 32·1 kg/m2 [5·9] to 29·2 kg/m2 [5·4]; p=0·86). However, whole-body insulin sensitivity increased more in responders than in non-responders (mean at baseline 291 mL/[min × m2], SD 60 to mean at 12 months 378 mL/[min × m2], 56 vs 278 mL/[min × m2], 62, to 323 mL/[min × m2], 66; p<0·0001), whereas insulin secretion did not differ within groups over time or between groups (responders mean at baseline 175 pmol/mmol [SD 64] to mean at 12 months 163·7 pmol/mmol [60·6] vs non-responders 158·0 pmol/mmol [55·6] to 154·1 pmol/mmol [56·2]; p=0·46). IHL decreased in both groups, without a difference between groups (responders mean at baseline 10·1% [SD 8·7] to mean at 12 months 3·5% [3·9] vs non-responders 10·3% [8·1] to 4·2% [4·2]; p=0·34); however, VAT decreased more in responders than in non-responders (mean at baseline 6·2 L [SD 2·9] to mean at 12 months 4·1 L [2·3] vs 5·7 L [2·3] to 4·5 L [2·2]; p=0·0003). Responders had a 73% lower risk of developing type 2 diabetes than non-responders in the 2 years after the intervention ended. INTERPRETATION: By contrast to remission of type 2 diabetes, resolution of prediabetes was characterised by an improvement in insulin sensitivity and reduced VAT. Because return to normal glucose regulation (NGR) prevents development of type 2 diabetes, we propose the concept of remission of prediabetes in analogy to type 2 diabetes. We suggest that remission of prediabetes should be the primary therapeutic aim in individuals with prediabetes. FUNDING: German Federal Ministry for Education and Research via the German Center for Diabetes Research; the Ministry of Science, Research and the Arts Baden-Württemberg; the Helmholtz Association and Helmholtz Munich; the Cluster of Excellence Controlling Microbes to Fight Infections; and the German Research Foundation.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Estado Pré-Diabético , Humanos , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/prevenção & controle , Redução de Peso , Peso Corporal , Glucose , Estilo de VidaRESUMO
Glucagon was initially regarded as a hyperglycemic substance; however, recent research has revealed its broader role in metabolism, encompassing effects on glucose, amino acids (AAs), and lipid metabolism. Notably, the interplay of glucagon with nutrient intake, particularly of AAs, and non-nutrient components is central to its secretion. Fasting and postprandial hyperglucagonemia have long been linked to the development and progression of type 2 diabetes (T2DM). However, recent studies have brought to light the positive impact of glucagon agonists on lipid metabolism and energy homeostasis. This review explores the multifaceted actions of glucagon, focusing on its regulation, signaling pathways, and effects on glucose, AAs, and lipid metabolism. The interplay between glucagon and other hormones, including insulin and incretins, is examined to provide a mechanistic understanding of its functions. Notably, the liver-α-cell axis, which involves glucagon and amino acids, emerges as a critical aspect of metabolic regulation. The dysregulation of glucagon secretion and its impact on conditions such as T2DM are discussed. The review highlights the potential therapeutic applications of targeting the glucagon pathway in the treatment of metabolic disorders.
Assuntos
Diabetes Mellitus Tipo 2 , Glucagon , Humanos , Insulina , Aminoácidos , GlucoseRESUMO
Nonalcoholic fatty liver disease (NAFLD) is strongly associated with the metabolic syndrome and type 2 diabetes and independently contributes to long-term complications. Being often asymptomatic but reversible, it would require population-wide screening, but direct diagnostics are either too invasive (liver biopsy), costly (MRI) or depending on the examiner's expertise (ultrasonography). Hepatosteatosis is usually accommodated by features of the metabolic syndrome (e.g. obesity, disturbances in triglyceride and glucose metabolism), and signs of hepatocellular damage, all of which are reflected by biomarkers, which poorly predict NAFLD as single item, but provide a cheap diagnostic alternative when integrated into composite liver fat indices. Fatty liver index, NAFLD LFS, and hepatic steatosis index are common and accurate indices for NAFLD prediction, but show limited accuracy for liver fat quantification. Other indices are rarely used. Hepatic fibrosis scores are commonly used in clinical practice, but their mandatory reflection of fibrotic reorganization, hepatic injury or systemic sequelae reduces sensitivity for the diagnosis of simple steatosis. Diet-induced liver fat changes are poorly reflected by liver fat indices, depending on the intervention and its specific impact of weight loss on NAFLD. This limited validity in longitudinal settings stimulates research for new equations. Adipokines, hepatokines, markers of cellular integrity, genetic variants but also simple and inexpensive routine parameters might be potential components. Currently, liver fat indices lack precision for NAFLD prediction or monitoring in individual patients, but in large cohorts they may substitute nonexistent imaging data and serve as a compound biomarker of metabolic syndrome and its cardiometabolic sequelae.
RESUMO
The Mediterranean Diet (MD) is plant-based and consists of multiple daily portions of vegetables, fruit, cereals, and olive oil. Although there are challenges with isolating the MD from the typical Mediterranean lifestyle and culture (including prolonged 'social' meals and siestas), much evidence supports the health benefits of the MD that include improved longevity, reduced metabolic risk of Diabetes Mellitus, obesity, and Metabolic Syndrome, reduced risk of malignancy and cardiovascular disease, and improved cognitive function. The MD is also associated with characteristic modifications to gut microbiota, mediated through its constituent parts (primarily dietary fibres, extra virgin olive oil, and polyunsaturated fatty acids [including ω-3]). These include enhanced growth of species that produce short-chain fatty acids (butyrate), such as Clostridium leptum and Eubacterium rectale, enhanced growth of Bifidobacteria, Bacteroides, and Faecalibacterium prausnitzii species, and reduced growth of Firmicutes and Blautia species. Such changes in gut microbiota are known to be associated favourably with inflammatory and oxidative status, propensity for malignancy and overall metabolic health. A key challenge for the future is to explore the extent to which the health benefits of the MD are mediated by such changes to gut microbiota. The MD confers both health and environmental benefits. Adoption of the MD should perhaps be encouraged and facilitated more generally and not just restricted to populations from Mediterranean regions. However, there are key challenges to this approach that include limited perennial availability of the constituent parts of the MD in some non-Mediterranean regions, intolerability of a high-fibre diet for some people, and potential cultural disconnects that juxtapose some traditional (including Western) diets with the MD.
Assuntos
Dieta Mediterrânea , Microbioma Gastrointestinal , Humanos , Bacteroides , Bifidobacterium , ButiratosRESUMO
Metabolic-associated fatty liver disease (MAFLD) has now surpassed alcohol excess as the most common cause of chronic liver disease globally, affecting one in four people. Given its prevalence, MAFLD is an important cause of cirrhosis, even though only a small proportion of patients with MAFLD ultimately progress to cirrhosis. MAFLD suffers as a clinical entity due to its insidious and often asymptomatic onset, lack of an accurate and reliable non-invasive diagnostic test, and lack of a bespoke therapy that has been designed and approved for use specifically in MAFLD. MAFLD sits at a crossroads between the gut and the periphery. The development of MAFLD (including activation of the inflammatory cascade) is influenced by gut-related factors that include the gut microbiota and intactness of the gut mucosal wall. The gut microbiota may interact directly with the liver parenchyma (through translocation via the portal vein), or indirectly through the release of metabolic metabolites that include secondary bile acids, trimethylamine, and short-chain fatty acids (such as propionate and acetate). In turn, the liver mediates the metabolic status of peripheral tissues (including insulin sensitivity) through a complex interplay of hepatokines, liver-secreted metabolites, and liver-derived micro RNAs. As such, the liver plays a key central role in influencing overall metabolic status. In this concise review, we provide an overview of the complex mechanisms whereby MAFLD influences the development of insulin resistance within the periphery, and gut-related factors impact on the development of MAFLD. We also discuss lifestyle strategies for optimising metabolic liver health.
RESUMO
BACKGROUND: The dysfunction of energy metabolism in white adipose tissue (WAT) induces adiposity. Obesogenic diets that are high in saturated fat disturb nutrient metabolism in adipocytes. This study investigated the effect of an isocaloric high-fat diet without the confounding effects of weight gain on the gene expression of fatty acid and carbohydrate transport and metabolism and its genetic inheritance in subcutaneous (s.c.) WAT of healthy human twins. METHODS: Forty-six healthy pairs of twins (34 monozygotic, 12 dizygotic) received an isocaloric carbohydrate-rich diet (55% carbohydrates, 30% fat, 15% protein; LF) for 6 weeks followed by an isocaloric diet rich in saturated fat (40% carbohydrates, 45% fat, 15% protein; HF) for another 6 weeks. RESULTS: Gene expression analysis of s.c. WAT revealed that fatty acid transport was reduced after one week of the HF diet, which persisted throughout the study and was not inherited, whereas intracellular metabolism was decreased after six weeks and inherited. An increased inherited gene expression of fructose transport was observed after one and six weeks, potentially leading to increased de novo lipogenesis. CONCLUSION: An isocaloric dietary increase of fat induced a tightly orchestrated, partially inherited network of genes responsible for fatty acid and carbohydrate transport and metabolism in human s.c. WAT.
Assuntos
Dieta Hiperlipídica , Ácidos Graxos , Adulto , Humanos , Tecido Adiposo/metabolismo , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/metabolismo , Ácidos Graxos/metabolismo , Gordura Subcutânea/metabolismoRESUMO
AIMS: Amino acids powerfully release glucagon but their contribution to postprandial hyperglucagonemia in type 2 diabetes remains unclear. Exogenously applied GIP stimulates, while GLP-1 inhibits, glucagon secretion in humans. However, their role in mixed meals is unclear, which we therefore characterized. METHODS: In three experiments, participants with type 2 diabetes and obese controls randomly received different loads of sugars and/or proteins. In the first experiment, participants ingested the rapidly cleaved saccharose (SAC) or slowly cleaved isomaltulose (ISO) which is known to elicit opposite profiles of GIP and GLP-1 secretion. In the second one participants received test meals which contained saccharose or isomaltulose in combination with milk protein. The third set of participants underwent randomized oral protein tests with whey protein or casein. Incretins, glucagon, C-peptide, and insulin were profiled by specific immunological assays. RESULTS: 50 g of the sugars alone suppressed glucagon in controls but slightly less in type 2 diabetes patients. Participants with type 2 diabetes showed excessive glucagon responses within 15 min and lasting over 3 h, while the obese controls showed small initial and delayed greater glucagon responses to mixed meals. The release of GIP was significantly faster and greater with SAC compared to ISO, while GLP-1 showed an inverse pattern. The glucagon responses to whey or casein were only moderately increased in type 2 diabetes patients without a left shift of the dose response curve. CONCLUSIONS: The rapid hypersecretion of glucagon after mixed meals in type 2 diabetes patients compared to controls is unaffected by endogenous incretins. The defective suppression of glucagon by glucose combined with hypersecretion to protein is required for the exaggerated response. CLINICAL TRIALS NUMBERS: NCT03806920, NCT02219295, NCT04564391.
Assuntos
Diabetes Mellitus Tipo 2 , Incretinas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Glucagon , Açúcares , Caseínas , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina , Refeições , Obesidade , Sacarose , Glicemia/metabolismoRESUMO
BACKGROUND: Exercise exerts many health benefits by directly inducing molecular alterations in physically utilized skeletal muscle. Molecular adaptations of subcutaneous adipose tissue (SCAT) might also contribute to the prevention of metabolic diseases. AIM: To characterize the response of human SCAT based on changes in transcripts and mitochondrial respiration to acute and repeated bouts of exercise in comparison to skeletal muscle. METHODS: Sedentary participants (27 ± 4 yrs) with overweight or obesity underwent 8-week supervised endurance exercise 3×1h/week at 80% VO2peak. Before, 60 min after the first and last exercise bout and 5 days post intervention, biopsies were taken for transcriptomic analyses and high-resolution respirometry (n = 14, 8 female/6 male). RESULTS: In SCAT, we found 37 acutely regulated transcripts (FC > 1.2, FDR < 10%) after the first exercise bout compared to 394, respectively, in skeletal muscle. Regulation of only 5 transcripts overlapped between tissues highlighting their differential response. Upstream and enrichment analyses revealed reduced transcripts of lipid uptake, storage and lipogenesis directly after exercise in SCAT and point to ß-adrenergic regulation as potential major driver. The data also suggest an exercise-induced modulation of the circadian clock in SCAT. Neither term was associated with transcriptomic changes in skeletal muscle. No evidence for beigeing/browning was found in SCAT along with unchanged respiration. CONCLUSIONS: Adipose tissue responds completely distinct from adaptations of skeletal muscle to exercise. The acute and repeated reduction in transcripts of lipid storage and lipogenesis, interconnected with a modulated circadian rhythm, can counteract metabolic syndrome progression toward diabetes.
Assuntos
Tecido Adiposo , Exercício Físico , Músculo Esquelético , Feminino , Humanos , Masculino , Tecido Adiposo/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Transcriptoma , Adulto Jovem , Adulto , Terapia por Exercício , Sobrepeso/terapia , Obesidade/terapia , Resultado do TratamentoRESUMO
The objective of this work was to investigate whether impaired insulin secretion can be restored by lifestyle intervention in specific subphenotypes of prediabetes. We assigned 1,045 participants from the Prediabetes Lifestyle Intervention Study (PLIS) to six recently established prediabetes clusters. Insulin secretion was assessed by a C-peptide-based index derived from oral glucose tolerance tests and modeled from three time points during a 1-year intervention. We also analyzed the change of glycemia, insulin sensitivity, and liver fat. All prediabetes high-risk clusters (cluster 3, 5, and 6) had improved glycemic traits during the lifestyle intervention, whereas insulin secretion only increased in clusters 3 and 5 (P < 0.001); however, high liver fat in cluster 5 was associated with a failure to improve insulin secretion (Pinteraction < 0.001). Thus, interventions to reduce liver fat have the potential to improve insulin secretion in a defined subgroup of prediabetes.