Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 171793, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513854

RESUMO

Due to global demand, millions of tons of plastics have been widely consumed, resulting in the widespread entry of vast amounts of microplastic particles into the environment. The presence of microplastics (MPs) in water supplies, including bottled water, has undergone systematic review, assessing the potential impacts of MPs on humans through exposure assessment. The main challenges associated with current technologies lie in their ability to effectively treat and completely remove MPs from drinking and supply water. While the risks posed by MPs upon entering the human body have not yet been fully revealed, there is a predicted certainty of negative impacts. This review encompasses a range of current technologies, spanning from basic to advanced treatments and varying in scale. However, given the frequent detection of MPs in drinking and bottled water, it becomes imperative to implement comprehensive management strategies to address this issue effectively. Consequently, integrating current technologies with management options such as life-cycle assessment, circular economy principles, and machine learning is crucial to eliminating this pervasive problem.


Assuntos
Água Potável , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Abastecimento de Água
2.
Sci Total Environ ; 899: 165595, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467995

RESUMO

Floating treatment wetlands (FTW) are nature-based solutions for the purification of open water systems such as rivers, ponds, and lakes polluted by diffuse sources as untreated or partially treated domestic wastewater and agricultural run-off. Compared with other physicochemical and biological technologies, FTW is a technology with low-cost, simple configuration, easy to operate; has a relatively high efficiency, and is energy-saving, and aesthetic. Water remediation in FTWs is supported by plant uptake and the growth of a biofilm on the water plant roots, so the selection of the macrophyte species is critical, not only to pollutant removal but also to the local ecosystem integrity, especially for full-scale implementation. The key factors such as buoyant frame/raft, plant growth support media, water depth, seasonal variation, and temperature have a considerable role in the design, operation, maintenance, and pollutant treatment performance of FTW. Harvesting is a necessary process to maintain efficient operation by limiting the re-pollution of plants in the decay phase. Furthermore, the harvested plant biomass can serve as a green source for the recovery of energy and value-added products.


Assuntos
Poluentes Químicos da Água , Áreas Alagadas , Ecossistema , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Plantas , Água , Nitrogênio/análise
3.
Sci Total Environ ; 870: 161927, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36736400

RESUMO

For years, agrochemical fertilizers have been used in agriculture for crop production. However, intensive utilization of chemical fertilizers is not an ecological and environmental choice since they are destroying soil health and causing an emerging threat to agricultural production on a global scale. Under the circumstances of the increasing utilization of chemical fertilizers, cultivating microalgae to produce biofertilizers would be a wise solution since desired environmental targets will be obtained including (1) replacing chemical fertilizer while improving crop yields and soil health; (2) reducing the harvest of non-renewable elements from limited natural resources for chemical fertilizers production, and (3) mitigating negative influences of climate change through CO2 capture through microalgae cultivation. Recent improvements in microalgae-derived-biofertilizer-applied agriculture will be summarized in this review article. At last, the recent challenges of applying biofertilizers will be discussed as well as the perspective regarding the concept of circular bio-economy and sustainable development goals (SDGs).


Assuntos
Microalgas , Fertilizantes , Agricultura , Solo , Produção Agrícola
4.
Sci Total Environ ; 837: 155832, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561924

RESUMO

Novel phycosphere associated bacteria processes are being regarded as a potential and cost-effective strategy for controlling anthropogenic contaminants in wastewater treatment. However, the underlying concern with the process is its vulnerability to improper organic or nutrient intake. This study established a synergistic interaction between microalgae and activated sludge in a three-photobioreactor system (without external aeration) to understand how pollutants could be mitigated whilst simultaneously yielding biomass under different C/N ratios of 1:1, 5:1 and 10:1. The result showed that the superior biomass productivity was facilitated at a C/N ratio of 5:1 (106 mg L-1 d-1), and the high degradation rate constants (kCOD = 0.25 d-1, kTN = 0.29 d-1, kTP = 0.35 d-1) was approximated using a first-order kinetic model. The removal of pollutants was remarkably high, exceeding 90% (COD), 93% (TN), and 96% (TP). Nevertheless, the C/N ratio of 1:1 resulted in a threefold drop in biomass-specific growth rate (µ = 0.07 d-1). Microalgal assimilation, followed by bacterial denitrification, is the major pathway of removing total nitrogen when the C/N ratio exceeds 5:1. Activated sludge plays an important role in improving microalgae tolerance to high concentration of ammonia nitrogen and boosting nitrification (light phase) and denitrification (dark phase). The use of phycosphere associated bacteria could be a promising strategy for controlling nutrients pollution and other environmental considerations in wastewater.


Assuntos
Poluentes Ambientais , Microalgas , Bactérias/metabolismo , Biomassa , Técnicas de Cocultura , Poluentes Ambientais/metabolismo , Microalgas/metabolismo , Nitrogênio/análise , Esgotos/microbiologia , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA