Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(9): 6286-6296, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39227342

RESUMO

While silicone elastomers have found widespread use in the biomedical industry, 3D printing them has proven to be difficult due to the material's slow drying time, low viscosity, and hydrophobicity. Herein, we arrested the hydrophilic silicone (HS) macrochains into a semi-interpenetrating polymer network (semi-IPN) via an in situ photogelation-assisted 3D microextrusion printing technique. The flow behavior of the pregel solutions and the mechanical properties of the printed HS hydrogels were tested, showing a high elastic modulus (approximately 15 kPa), a low tan δ, high elasticity, and delayed network rupturing. The uniaxial compression tests demonstrated a nearly negligible permanent deformation, suggesting that the printed hybrid hydrogel maintained its elastic properties. Drug loading and diffusion in the microporous hydrogel are shown via the non-Fickian anomalous transport mechanism, leading to highly tunable loading/releasing profiles (approximately 20% cumulative release) depending on the HS concentration. The drug encapsulation exhibits exceptional stability, remaining intact without any degradation even after a storage period of 1 month. As far as we know, this is the first soft biomaterial based on HS that functions as an exceptional controlled drug delivery device.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Impressão Tridimensional , Hidrogéis/química , Materiais Biocompatíveis/química , Silicones/química , Sistemas de Liberação de Medicamentos , Tamanho da Partícula , Soluções Oftálmicas/química
2.
Cont Lens Anterior Eye ; 47(2): 102129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423868

RESUMO

PURPOSE: To evaluate the in vitro wettability and coefficient of friction of a novel amphiphilic polymeric surfactant (APS), poly(oxyethylene)-co-poly(oxybutylene) (PEO-PBO) releasing silicone hydrogel (SiHy) contact lens material (serafilcon A), compared to other reusable SiHy lens materials. METHODS: The release of fluorescently-labelled nitrobenzoxadiazole (NBD)-PEO-PBO was evaluated from serafilcon A over 7 days in a vial. The wettability and coefficient of friction of serafilcon A and three contemporary SiHy contact lens materials (senofilcon A; samfilcon A; comfilcon A) were evaluated using an in vitro blink model over their recommended wearing period; t = 0, 1, 7, 14 days for all lens types and t = 30 days for samfilcon A and comfilcon A (n = 4). Sessile drop contact angles were determined and in vitro non-invasive keratographic break-up time (NIKBUT) measurements were assessed on a blink model via the OCULUS Keratograph 5 M. The coefficient of friction was measured using a nano tribometer. RESULTS: The relative fluorescence of NBD-PEO-PBO decreased in serafilcon A by approximately 18 % after 7 days. The amount of NBD-PEO-PBO released on day 7 was 50 % less than the amount released on day 1 (6.5±1.0 vs 3.4±0.5 µg/lens). The reduction in PEO-PBO in the lens also coincided with an increase in contact angles for serafilcon A after 7 days (p < 0.05), although there were no changes in NIKBUT or coefficient of friction (p > 0.05). The other contact lens materials had stable contact angles and NIKBUT over their recommended wearing period (p > 0.05), with the exception of samfilcon A, which had an increase in contact angle after 14 days as compared to t = 0 (p < 0.05). Senofilcon A and samfilcon A also showed an increase in coefficient of friction at 14 and 30 days, respectively, compared to their blister pack values (p < 0.05). CONCLUSION: The results indicate that serafilcon A gradually depletes its reserve of PEO-PBO over 1 week, but this decrease did not significantly change the lens performance in vitro during this time frame.


Assuntos
Lentes de Contato Hidrofílicas , Silicones , Humanos , Molhabilidade , Hidrogéis , Fricção
3.
Clin Exp Optom ; 107(2): 156-170, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37879342

RESUMO

Traditional Chinese Medicine has a long history in ophthalmology in China. Over 250 kinds of Traditional Chinese Medicine have been recorded in ancient books for the management of eye diseases, which may provide an alternative or supplement to current ocular therapies. However, the core holistic philosophy of Traditional Chinese Medicine that makes it attractive can also hinder its understanding from a scientific perspective - in particular, determining true cause and effect. This review focused on how Traditional Chinese Medicine could be applied to two prevalent ocular diseases, glaucoma, and cataract. The literature on preclinical and clinical studies in both English and Chinese on the use of Traditional Chinese Medicine to treat these two diseases was reviewed. The pharmacological effects, safety profile, and drug-herb interaction of selected herbal formulas were also investigated. Finally, key considerations for conducting future Traditional Chinese Medicine studies are discussed.


Assuntos
Catarata , Glaucoma , Humanos , Medicina Tradicional Chinesa , China , Glaucoma/tratamento farmacológico
4.
Pharmaceutics ; 15(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38004603

RESUMO

This study attempts to address the challenge of accurately measuring the degradation of biodegradable hydrogels, which are frequently employed in drug delivery for controlled and sustained release. The traditional method utilizes a mass-loss approach, which is cumbersome and time consuming. The aim of this study was to develop an innovative screening platform using a millifluidic device coupled with automated image analysis to measure the degradation of Gelatin methacrylate (GelMA) and the subsequent release of an entrapped wetting agent, polyvinyl alcohol (PVA). Gel samples were placed within circular wells on a custom millifluidic chip and stained with a red dye for enhanced visualization. A camera module captured time-lapse images of the gels throughout their degradation. An image-analysis algorithm was used to translate the image data into degradation rates. Simultaneously, the eluate from the chip was collected to quantify the amount of GelMA degraded and PVA released at various time points. The visual method was validated by comparing it with the mass-loss approach (R = 0.91), as well as the amount of GelMA eluted (R = 0.97). The degradation of the GelMA gels was also facilitated with matrix metalloproteinases 9. Notably, as the gels degraded, there was an increase in the amount of PVA released. Overall, these results support the use of the screening platform to assess hydrogel degradation and the subsequent release of entrapped therapeutic compounds.

5.
Transl Vis Sci Technol ; 12(6): 29, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37382574

RESUMO

Purpose: To evaluate the link between the viscosity of ophthalmic formulation and tear film stability using a novel in vitro eye model. Methods: The viscosities and noninvasive tear breakup time (NIKBUT) of 13 commercial ocular lubricants were measured to evaluate the correlation between viscosity and NIKBUT. The complex viscosity of each lubricant was measured three times for each angular frequency (ranging from 0.1 to 100 rad/s) using the Discovery HR-2 hybrid rheometer. The NIKBUT measurements were performed eight times for each lubricant using an advanced eye model mounted on the OCULUS Keratograph 5M. A contact lens (CL; ACUVUE OASYS [etafilcon A]) or a collagen shield (CS) was used as the simulated corneal surface. Phosphate-buffered saline was used as a simulated fluid. Results: The results showed a positive correlation between viscosity and NIKBUT at high shear rates (at 10 rad/s, r = 0.67) but not at low shear. This correlation was even better for viscosities between 0 and 100 mPa*s (r = 0.85). Most of the lubricants tested in this study also had shear-thinning properties. OPTASE INTENSE, I-DROP PUR GEL, I DROP MGD, OASIS TEARS PLUS, and I-DROP PUR had higher viscosity in comparison to other lubricants (P < 0.05). All of the formulations had a higher NIKBUT than the control (2.7 ± 1.2 seconds for CS and 5.4 ± 0.9 seconds for CL) without any lubricant (P < 0.05). I-DROP PUR GEL, OASIS TEARS PLUS, I-DROP MGD, REFRESH OPTIVE ADVANCED, and OPTASE INTENSE had the highest NIKBUT using this eye model. Conclusions: The results show that the viscosity is correlated with NIKBUT, but further work is necessary to determine the underlying mechanisms. Translational Relevance: The viscosity of ocular lubricants can affect NIKBUT and tear film stability, so it is an important property to consider when formulating ocular lubricants.


Assuntos
Lentes de Contato , Olho , Viscosidade , Glicerol , Lubrificantes/farmacologia
6.
Drug Deliv Transl Res ; 13(4): 1116-1127, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36528710

RESUMO

There is still a paucity of information on how in vitro release profiles from drug-loaded contact lenses (CLs) recorded in 3D printed eye models correlate with in vivo profiles. This work aims to evaluate the release profiles of two drug-loaded CLs in a 3D in vitro eye blink model and compare the obtained results with the release in a vial and the drug levels in tear fluid previously obtained from an animal in vivo study. In vitro release in the eye model was tested at two different flow rates (5 and 10 µL/min) and a blink speed of 1 blink/10 s. Model CLs were loaded with two different drugs, hydrophilic pravastatin and hydrophobic resveratrol. The release of both drugs was more sustained and lower in the 3D eye model compared to the in vitro release in vials. Interestingly, both drugs presented similar release patterns in the eye model and in vivo, although the total amount of drugs released in the eye model was significantly lower, especially for resveratrol. Strong correlations between percentages of pravastatin released in the eye model and in vivo were found. These findings suggest that the current 3D printed eye blink model could be a useful tool to measure the release of ophthalmic drugs from medicated CLs. Nevertheless, physiological parameters such as the composition of the tear fluid and eyeball surface, tear flow rates, and temperature should be optimized in further studies.


Assuntos
Lentes de Contato Hidrofílicas , Animais , Liberação Controlada de Fármacos , Pravastatina , Resveratrol , Olho , Sistemas de Liberação de Medicamentos
7.
Pharmaceutics ; 16(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38258038

RESUMO

PURPOSE: The purpose of this study was to develop an enzyme-triggered, therapeutic-releasing bandage contact lens material using a unique gelatin methacrylate formulation (GelMA+). METHODS: Two GelMA+ formulations, 20% w/v, and 30% w/v concentrations, were prepared through UV polymerization. The physical properties of the material, including porosity, tensile strain, and swelling ratio, were characterized. The enzymatic degradation of the material was assessed in the presence of matrix metalloproteinase-9 (MMP-9) at concentrations ranging from 0 to 300 µg/mL. Cell viability, cell growth, and cytotoxicity on the GelMA+ gels were evaluated using the AlamarBlueTM assay and the LIVE/DEADTM Viability/Cytotoxicity kit staining with immortalized human corneal epithelial cells over 5 days. For drug release analysis, the 30% w/v gels were loaded with 3 µg of bovine lactoferrin (BLF) as a model drug, and its release was examined over 5 days under various MMP-9 concentrations. RESULTS: The 30% w/v GelMA+ demonstrated higher crosslinking density, increased tensile strength, smaller pore size, and lower swelling ratio (p < 0.05). In contrast, the 20% w/v GelMA+ degraded at a significantly faster rate (p < 0.001), reaching almost complete degradation within 48 h in the presence of 300 µg/mL of MMP-9. No signs of cytotoxic effects were observed in the live/dead staining assay for either concentration after 5 days. However, the 30% w/v GelMA+ exhibited significantly higher cell viability (p < 0.05). The 30% w/v GelMA+ demonstrated sustained release of the BLF over 5 days. The release rate of BLF increased significantly with higher concentrations of MMP-9 (p < 0.001), corresponding to the degradation rate of the gels. DISCUSSION: The release of BLF from GelMA+ gels was driven by a combination of diffusion and degradation of the material by MMP-9 enzymes. This work demonstrated that a GelMA+-based material that releases a therapeutic agent can be triggered by enzymes found in the tear fluid.

8.
Transl Vis Sci Technol ; 11(3): 1, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35234832

RESUMO

PURPOSE: To evaluate the shear viscosity of contemporary, commercially available ocular lubricants at various shear rates and temperatures and to derive relevant mathematical viscosity models that are impactful for prescribing and developing eye drops to treat dry eye disease. METHODS: The shear viscosity of 12 ocular lubricants was measured using a rheometer and a temperature-controlled bath at clinically relevant temperatures at which users may experience exposure to the drops (out of the refrigerator [4.3°C]; room temperature [24.6°C]; ocular surface temperature [34.5°C]). Three replicates for each sample at each temperature were obtained using a standard volume (0.5 mL) of each sample. The viscosity of each ocular lubricant was measured over the full range of shear rates allowed by the rheometer. RESULTS: The shear viscosity of the same ocular lubricant varied significantly among the three temperatures. In general, a higher temperature resulted in smaller viscosities than a lower temperature (an average of -48% relative change from 4.3°C to 24.6°C and -21% from 24.6°C to 34.5°C). At a constant temperature, the viscosity of an ocular lubricant over the studied shear rates can be well approximated by a power-law model. CONCLUSIONS: Rheological analysis revealed that the ocular lubricants exhibited shear-thinning behavior at the measured temperatures. Differences in the ocular lubricants' formulations and measured temperatures resulted in different viscosities. TRANSLATIONAL RELEVANCE: When prescribing eye drops, eye care professionals can select the optimal one for their patients by considering a variety of factors, including its rheological property at physiologically relevant shear rates and temperatures, which can improve residence time on the ocular surface, while ensuring appropriate comfort and vision. However, care must be taken when using the derived mathematical models in this study because the in vivo shear behavior of the ocular lubricants has not been examined and might show deviations from those reported when placed on the ocular surface.


Assuntos
Síndromes do Olho Seco , Síndromes do Olho Seco/tratamento farmacológico , Humanos , Lubrificantes , Soluções Oftálmicas , Reologia/métodos , Temperatura , Viscosidade
9.
Cont Lens Anterior Eye ; 45(5): 101575, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35131120

RESUMO

PURPOSE: The purpose of this study was to evaluate the uptake and release of radiolabelled polyhexamethylene biguanide (PHMB) on reusable daily wear contact lenses (CLs) over 7 days. METHODS: Three silicone hydrogel (SH) contact lens materials (lotrafilcon B, balafilcon A, senofilcon A) and two conventional hydrogel (CH) materials (etafilcon A, omafilcon A) were examined. In experiment 1 (1-day study), CLs were soaked in 2 mL of phosphate buffered solution (PBS) containing radiolabelled 14C PHMB (1 µg/mL) for 8 h. The release kinetics of 14C PHMB from the CLs was measured at t = 0.25, 0.5, 1, 2, 4, 8, and 24 h in fresh 2 mL PBS. In experiment 2 (7-day study), the CLs were soaked in the 14C PHMB (1 µg/mL) solution for 8 h followed by a 16-hour release in 2 mL PBS. The lens cycle was repeated daily for 7 days. After both experiments, the residual amount of PHMB remaining within the lenses was extracted to determine the total uptake of PHMB. RESULTS: In experiment 1, the total uptake of PHMB for etafilcon A was significantly greater than senofilcon A (p = 0.01). There were no significant differences in total uptake of PHMB between other lens materials (p > 0.05). Etafilcon A released more PHMB compared to all other lens types over a 24-hr period (p < 0.001). In experiment 2, all CL materials continued to sorb more PHMB over time (p < 0.001). By day 7, the amount of PHMB sorbed by etafilcon A was significantly greater than senofilcon A (p = 0.02). After day 2, the CH materials released significantly more PHMB than the SH materials (p < 0.01). CONCLUSION: The CL materials continued to sorb PHMB with no signs of saturation after 7 days. All lens materials released a consistent amount of PHMB each day. Radioactive labelling provides a sensitive method of assessing the uptake and release of PHMB from CL materials.


Assuntos
Lentes de Contato Hidrofílicas , Biguanidas , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Hidrogéis , Metacrilatos , Fosfatos , Silicones
10.
J Control Release ; 343: 672-702, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35176393

RESUMO

Contact lenses (CLs) offer a wide variety of advantages as ocular drug-releasing platforms, but the feasibility of medicated CL development is constrained by numerous scientific, technological, and regulatory challenges. One main difficulty is the setting of release rate specifications for each drug, since at present there are no standardized in vitro release models that can appropriately predict the performance of drug-eluting CLs once placed onto the eye. CL-adapted release tests may provide knowledge on how the drug release pattern should perform in vivo to trigger and maintain the therapeutic effects for both anterior and posterior ocular tissues. Moreover, in vitro release tests are valuable tools for quality assessment during production and to investigate the effect of a change in composition or process variables. This review aims to shed light on biorelevant ways of evaluating in vitro drug release from CLs and the feasibility of establishing in vitro-in vivo correlations (IVIVC) to predict in vivo performance. First, general guidelines and Pharmacopeia release tests for topical ophthalmic formulations as well as in vitro release tests implemented for drug-CLs in the last two decades are analyzed. Then, development of an appropriate method to investigate IVIVC is attempted from the few papers simultaneously reporting in vitro release profiles and either in vivo release or therapeutic response. Finally, key points to be considered for in vitro testing drug release from a medicated CL are suggested to pave the way to the clinical arena.


Assuntos
Lentes de Contato , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Olho
11.
Transl Vis Sci Technol ; 10(8): 11, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34251425

RESUMO

Purpose: The purpose of this study was to evaluate the effects of temperature and blinking on contact lens (CL) dehydration using an in vitro blink model. Methods: Three silicone hydrogel (delefilcon A, senofilcon A, and comfilcon A) and two conventional hydrogel (etafilcon A and omafilcon A) CL materials were evaluated at 1 and 16 hours. The water content (WC) of the CLs was measured using a gravimetric method. Lenses were incubated on a blink model, internally heated to achieve a clinically relevant surface temperature of 35°C. An artificial tear solution (ATS) was delivered to the blink model at 4.5 µL/min with a blink rate of 6 blinks/min. A comparison set of lenses were incubated in a vial containing either 2 mL of ATS or phosphate-buffered saline (PBS) at 35°C. Results: Increasing temperature to 35°C resulted in a decrease in WC for all tested CLs over time (P ≤ 0.0052). For most CLs, there was no significant difference in WC over time between ATS or PBS in the vial (P > 0.05). With the vial system, WC decreased and plateaued over time. However, on the blink model, for most CLs, the WC significantly decreased after 1 hour but returned toward initial WC levels after 16 hours (P > 0.05). Conclusions: The reduction in WC of CLs on the eye is likely due to both an increase in temperature and dehydration from air exposure and blinking. Translational Relevance: This study showed that the novel, heated, in vitro blink model could be used to provide clinical insights into CL dehydration on the eye.


Assuntos
Piscadela , Lentes de Contato Hidrofílicas , Desidratação , Humanos , Lágrimas , Temperatura
12.
Eye Contact Lens ; 47(7): 388-393, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33840748

RESUMO

PURPOSE: To evaluate active lysozyme deposition on daily disposable (DD) contact lenses (CL) using a novel in vitro blink model. METHODS: Three conventional hydrogel DD CL materials (etafilcon A, omafilcon A, nelfilcon A) and three silicone hydrogel DD CL materials (delefilcon A, senofilcon A, somofilcon A) were tested. The device blink rate was set to 6 blinks/min with a tear flow rate of 1 µL/min using an artificial tear solution (ATS) containing lysozyme and other typical tear film components. After incubation at 2, 4, or 8 hr, lenses were removed, and lysozyme activity was measured. A separate experiment was conducted with lenses incubated in a static vial containing 480 µL of ATS. RESULTS: Etafilcon A deposited significantly higher amounts of active lysozyme (402±102 µg/lens) than other lens materials after 8 hr (P<0.0001). Etafilcon A had a higher amount of active lysozyme using the blink model compared with the static vial (P=0.0435), whereas somofilcon A (P=0.0076) and senofilcon A (P=0.0019) had a higher amount of lysozyme activity in the vial compared with the blink model. CONCLUSION: The blink model can be tuned to provide quantitative data that closely mimics ex vivo studies and can be used to model deposition of lysozyme on CL materials.


Assuntos
Lentes de Contato Hidrofílicas , Muramidase , Piscadela , Humanos , Silicones , Lágrimas
13.
Pharmaceutics ; 13(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668884

RESUMO

PURPOSE: The purpose of this study was to develop an advanced in vitro blink model that can be used to examine the release of a wide variety of components (for example, topical ophthalmic drugs, comfort-inducing agents) from soft contact lenses. METHODS: The model was designed using computer-aided design software and printed using a stereolithography 3D printer. The eyelid and eyeball were synthesized from polyvinyl alcohol and silicone material, respectively. Simulated tear fluid was infused through tubing attached to the eyelid using a syringe pump. With each blink cycle, the eyelid slides and flexes across the eyeball to create an artificial tear film layer. The flow-through fluid was collected using a specialized trough. Two contact lenses, etafilcon A and senofilcon A, were incubated in 2 mL of a water-soluble red dye for 24 h and then placed on the eye model (n = 3). The release of the dye was measured over 24 h using a tear flow rate of 5 µL/min. RESULTS: Approximately 25% of the fluid that flowed over the eye model was lost due to evaporation, nonspecific absorption, and residual dead volume. Senofilcon A absorbed more dye (47.6 ± 2.7 µL) than etafilcon A (22.3 ± 2.0 µL). For etafilcon A, the release of the dye followed a burst-plateau profile in the vial but was sustained in the eye model. For senofilcon A, the release of the dye was sustained in both the vial and the eye model, though more dye was released in the vial (p < 0.05). Overall, the release of the dye from the contact lenses was higher in the vial compared with the eye model (p < 0.05). CONCLUSION: The blink model developed in this study could be used to measure the release of topical ophthalmic drugs or comfort agents from contact lenses. Simulation of a blink mechanism, an artificial tear film, and nonspecific absorption in an eye model may provide better results than a simple, static vial incubation model.

14.
Cont Lens Anterior Eye ; 44(2): 398-430, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33775384

RESUMO

Contact lenses in the future will likely have functions other than correction of refractive error. Lenses designed to control the development of myopia are already commercially available. Contact lenses as drug delivery devices and powered through advancements in nanotechnology will open up further opportunities for unique uses of contact lenses. This review examines the use, or potential use, of contact lenses aside from their role to correct refractive error. Contact lenses can be used to detect systemic and ocular surface diseases, treat and manage various ocular conditions and as devices that can correct presbyopia, control the development of myopia or be used for augmented vision. There is also discussion of new developments in contact lens packaging and storage cases. The use of contact lenses as devices to detect systemic disease has mostly focussed on detecting changes to glucose levels in tears for monitoring diabetic control. Glucose can be detected using changes in colour, fluorescence or generation of electric signals by embedded sensors such as boronic acid, concanavalin A or glucose oxidase. Contact lenses that have gained regulatory approval can measure changes in intraocular pressure to monitor glaucoma by measuring small changes in corneal shape. Challenges include integrating sensors into contact lenses and detecting the signals generated. Various techniques are used to optimise uptake and release of the drugs to the ocular surface to treat diseases such as dry eye, glaucoma, infection and allergy. Contact lenses that either mechanically or electronically change their shape are being investigated for the management of presbyopia. Contact lenses that slow the development of myopia are based upon incorporating concentric rings of plus power, peripheral optical zone(s) with add power or non-monotonic variations in power. Various forms of these lenses have shown a reduction in myopia in clinical trials and are available in various markets.


Assuntos
Lentes de Contato , Miopia , Presbiopia , Erros de Refração , Olho , Humanos , Refração Ocular , Erros de Refração/diagnóstico , Erros de Refração/terapia
15.
Eye Contact Lens ; 47(2): 127-133, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31789754

RESUMO

PURPOSE: To visualize the deposition of fluorescein isothiocyanate (FITC) lysozyme on daily disposable contact lenses (CLs) using a novel blink model. METHODS: Three daily disposable conventional hydrogel CLs (etafilcon A, omafilcon A, and nelfilcon A) and three silicone hydrogel CLs (delefilcon A, senofilcon A, and somofilcon A) were evaluated in the study. The CLs were mounted onto a novel blink model and exposed to an artificial tear solution containing FITC lysozyme for 2 and 10 hr. The flow rate and blink speed were set to 1 µL/min and 6 blinks/min, respectively. After the incubation period, a 5-mm-diameter disc was punched out from the center of the lens and mounted on a microscope slide. The slides were imaged using the Zeiss 510 Meta confocal laser scanning microscope, which scanned the lens from the front to the back surface at 5-µm increments. RESULTS: There was an increase in deposition of FITC lysozyme for all lens types with increasing incubation time (P<0.05), with the exception of somofilcon A, which did not show statistical significance between 2 and 10 hr (P>0.05). The conventional hydrogel CLs deposited higher amounts of FITC lysozyme than the silicone hydrogel CLs (P<0.001), with etafilcon A depositing the highest at all time points (P<0.05). Interestingly, at the 2-hr incubation time, most CLs showed a higher amount of deposition at the front surface than the back surface of the lens. In particular, etafilcon A showed preferred deposition at the front surface at all time points. CONCLUSION: The results suggest that there is differential deposition at the front surface of the CL, which is exposed to the prelens tear film, compared with the back surface of the CL, which is exposed to the postlens tear film. Therefore, it may be beneficial to design CL materials with differing surface properties for the front and back surfaces of the CL to enhance interactions with the tear film and ocular surface.


Assuntos
Lentes de Contato Hidrofílicas , Muramidase , Piscadela , Humanos , Silicones , Lágrimas
16.
Eye Contact Lens ; 47(5): 249-255, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32604136

RESUMO

PURPOSE: The purpose of this study was to evaluate the uptake and release of radiolabelled myristamidopropyl dimethylamine (MAP-D) on reusable daily wear contact lenses (CLs) over 7 days. METHODS: Three silicone hydrogel (SH) CL materials (lotrafilcon B, balafilcon A, senofilcon A) and two conventional hydrogel (CH) materials (etafilcon A, omafilcon A) were tested. A short-term (experiment 1, N=4) and a longer-term (experiment 2, N=3) study was conducted. In experiment 1, the CLs were incubated in 2 mL of phosphate buffered solution (PBS) containing 14C MAP-D (5 µg/mL) for 8 hrs. The release of 14C MAP-D was measured at t=0.25, 0.5, 1, 2, 4, 8, and 24 hr in PBS. In experiment 2, the CLs were incubated in the 14C MAP-D solution for 8 hrs followed by a 16-hr release in PBS. This cycle was repeated daily for 7 days. At the end of both experiments, lenses were extracted to determine the total uptake of MAP-D. The radioactivity was measured using a beta scintillation counter. RESULTS: In experiment 1, all three SH lenses sorbed similar amounts of MAP-D (P=0.99), all of which were higher than the two CH materials (P<0.01). However, the CH materials released a greater amount of MAP-D than the SH materials (P<0.01). In experiment 2, the uptake of MAP-D in SH materials increased over 7 days, whereas the amount of MAP-D remained constant in the CH materials (P=0.99). Similar to experiment 1, the CH lenses released more MAP-D than SH lenses after 7 days (P<0.01). CONCLUSION: The SH materials absorbed greater amounts of MAP-D compared to CH materials. However, the CH materials released the greatest amount of MAP-D. Radioactive labelling of MAP-D offers a highly sensitive method of assessing the uptake and release profiles of biocides to CL materials.


Assuntos
Lentes de Contato Hidrofílicas , Desinfetantes , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Hidrogéis , Propilaminas , Silicones
17.
Optom Vis Sci ; 96(3): 180-186, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30801502

RESUMO

SIGNIFICANCE: Polyvinyl alcohol is a wetting agent that could reduce the symptoms of dry eye and contact lens discomfort. Currently, only one lens type, nelfilcon A (DAILIES AquaComfort Plus), releases polyvinyl alcohol. The concept of releasing this agent from contact lenses could be applied to other lens materials. PURPOSE: The purpose of this study was to measure the release of polyvinyl alcohol from commercially available hydrogel daily disposable contact lenses using refractive index and iodine-borate methods. METHODS: Etafilcon A, omafilcon A, and nelfilcon A were soaked in phosphate-buffered saline and 0.2% trifluoroacetic acid/acetonitile for 24 hours to remove residual blister pack components. The lenses were then incubated in a 10-mg/mL solution of polyvinyl alcohol for 24 hours. After the incubation period, the lenses were placed in 2 mL of phosphate-buffered saline. At specified time intervals, t = 0.5, 1, 2, 4, 8, 12, and 24 hours, the samples were evaluated using refractive index and an iodine-borate assay. Polyvinyl alcohol uptake was determined by extracting the lenses with methanol for 24 hours. RESULTS: There were no differences in the uptake of polyvinyl alcohol between lens types (P > .05). The release of this wetting agent for all lens types followed a burst-plateau profile after the first 30 minutes (P > .05). Nelfilcon A had a slightly higher release of polyvinyl alcohol (P < .05) than did etafilcon A but was similar to omafilcon A (P > .05). CONCLUSIONS: The results suggest that the contact lenses tested in this study have similar efficiency in delivering polyvinyl alcohol.


Assuntos
Lentes de Contato Hidrofílicas , Equipamentos Descartáveis , Álcool de Polivinil/farmacocinética , Hidrogéis , Refratometria
18.
J Biomed Mater Res B Appl Biomater ; 107(5): 1662-1668, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30325095

RESUMO

The purpose of this work was to determine the release of polyvinyl alcohol (PVA) from etafilcon A, omafilcon A, and nelfilcon A daily disposable hydrogel contact lenses using a novel in vitro model. PVA is an ocular lubricant that can be found in multiple formulations of artificial tears. Nelfilcon A innately contains PVA, so only the release of PVA from this lens was evaluated. Etafilcon A and omafilcon A lenses were incubated in a PBS solution containing PVA. The release of PVA was evaluated using a novel in vitro blink platform with Milli-Q water and PBS under various blink conditions and flow rates. Nelfilcon A lenses significantly released more PVA than other lenses at 0.5 and 1.5 h in both PBS and Milli-Q water (p < 0.001). For nelfilcon A, there was no statistical significance between the release profiles of PVA between the blink and no-blink conditions, or for the various flow rates (p > 0.05). All tested groups and lenses showed a burst release within the first 4.5 h and rapidly plateaued thereafter. The current study demonstrates that releasable PVA (whether through uptake or through being inherently available from the material) is loosely bound on hydrogel lenses, and the majority is released within 4.5 h. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1662-1668, 2019.


Assuntos
Derramamento de Material Biológico/prevenção & controle , Lentes de Contato Hidrofílicas , Hidrogéis/química , Derivados da Hipromelose/química , Álcool de Polivinil/química , Humanos , Metacrilatos/química , Lágrimas/metabolismo , Fatores de Tempo
19.
J Biomater Sci Polym Ed ; 29(17): 2124-2136, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30157706

RESUMO

The traditional method to measure release of components from CLs is a vial containing a static volume of PBS (phosphate buffered saline). However, this model does not simulate physiologically relevant tear volume and natural tear flow, air exposure, and mechanical rubbing. These factors can significantly impact release kinetics. We have developed an in vitro eye model (OcuFlow) that simulates these parameters. The aim of the study was to measure the release of PEG (polyethylene glycol), and HPMC (hydroxypropyl methylcellulose) from a daily disposable hydrogel contact lens material (nelfilcon A; Dailies AquaComfort PLUS; DACP;) over 24 hrs using the OcuFlow platform. The elution of PEG and HPMC from DACP lenses was analyzed using LCMS (liquid chromatography mass spectrometry). The release of all wetting agents from the lenses followed a burst release pattern, which occurred within the first 1.5 hrs (P < 0.05). The release of PEG was greater than that of HPMC (P < 0.05). The amount of PEG and HPMC released at any given time was less than 1% of the amount in the blister pack solution. Our results suggest that HPMC and PEG are rapidly released from the CL.


Assuntos
Lentes de Contato Hidrofílicas , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Derivados da Hipromelose/química , Polietilenoglicóis/química , Cromatografia Líquida de Alta Pressão , Liberação Controlada de Fármacos , Humanos , Espectrometria de Massas em Tandem , Lágrimas , Fatores de Tempo
20.
Transl Vis Sci Technol ; 7(2): 18, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29644148

RESUMO

PURPOSE: We evaluate the differences in lipid uptake and penetration in daily disposable (DD) contact lenses (CL) using a conventional "in-vial" method compared to a novel in vitro eye model. METHODS: The penetration of fluorescently labelled 22-(N-(7-Nitrobenz-2-Oxa-1,3-Diazol-4-yl)Amino)-23,24-Bisnor-5-Cholen-3beta-Ol (NBD)-cholesterol on three silicone hydrogel (SH) and four conventional hydrogel (CH) DD CLs were investigated. CLs were incubated for 4 and 12 hours in a vial, containing 3.5 mL artificial tear solution (ATS), or were mounted on an in vitro eye-blink platform designed to simulate physiologic tear flow (2 mL/24 hours), tear volume and "simulated" blinking. Subsequently, CLs were analyzed using laser scanning confocal microscopy and ImageJ. RESULTS: Penetration depth and fluorescence intensities of NBD-cholesterol varied between the incubation methods as well as lens materials. Using the traditional vial incubation method, NBD-cholesterol uptake occurred equally on both sides of all lens materials. However, using our eye-blink model, cholesterol penetration was observed primarily on the anterior surface of the CLs. In general, SH lenses showed higher intensities of NBD-cholesterol than CH materials. CONCLUSIONS: The traditional "in-vial" incubation method exposes the CLs to an excessively high amount of ATS, which results in an overestimation for cholesterol deposition. Our model, which incorporates important ocular factors, such as intermittent air exposure, small tear volume, and physiological tear flow between blinks, provides a more natural environment for in vitro lens incubation. TRANSLATIONAL RELEVANCE: In vitro measurements of CLs are a common approach to predict their interactions and performance on the eye. Traditional methods, however, are rudimentary. Therefore, this study presents a novel in vitro model to evaluate CLs, which consequently will enhance elucidations of the interactions between CLs and the eye.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA