Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 278: 119658, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34048809

RESUMO

AIMS: Maslinic acid (MA) is a naturally occurring pentacyclic triterpene known to exert cardioprotective effects. This study aims to investigate the involvement of nuclear factor erythroid 2-related factor 2 (Nrf2) for MA-mediated anti-inflammatory effects in atheroma pathogenesis in vitro, including evaluation of tumor necrosis factor-alpha (TNF-α)-induced monocyte recruitment, oxidized low-density lipoprotein (oxLDL)-induced scavenger receptors expression, and nuclear factor-kappa B (NF-ĸB) activity in human umbilical vein endothelial cells (HUVECS) and human acute monocytic leukemia cell line (THP-1) macrophages. MATERIALS AND METHODS: An in vitro monocyte recruitment model utilizing THP-1 and HUVECs was developed to evaluate TNF-α-induced monocyte adhesion and trans-endothelial migration. To study the role of Nrf2 for MA-mediated anti-inflammatory effects, Nrf2 inhibitor ML385 was used as the pharmacological inhibitor. The expression of Nrf2, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1), cluster of differentiation 36 (CD36), and scavenger receptor type A (SR-A) in HUVECs and THP-1 macrophages were investigated using RT-qPCR and Western blotting. The NF-κB activity was determined using NF-κB (p65) Transcription Factor Assay Kit. KEY FINDINGS: The results showed opposing effects of MA on Nrf2 expression in HUVECs and THP-1 macrophages. MA suppressed TNF-α-induced Nrf2 expression in HUVECs, but enhanced its expression in THP-1 macrophages. Combined effects of MA and ML385 suppressed MCP-1, VCAM-1, and SR-A expressions. Intriguingly, at the protein level, ML385 selectively inhibited SR-A but enhanced CD36 expression. Meanwhile, ML385 further enhanced MA-mediated inhibition of NF-κB activity in HUVECs. This effect, however, was not observed in THP-1 macrophages. SIGNIFICANCE: MA attenuated foam cell formation by suppressing VCAM-1, MCP-1, and SR-A expression, as well as NF-κB activity, possibly through Nrf2 inhibition. The involvement of Nrf2 for MA-mediated anti-inflammatory effects however differs between HUVECs and macrophages. Future investigations are warranted for a detailed evaluation of the contributing roles of Nrf2 in foam cells formation.


Assuntos
Anti-Inflamatórios/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Placa Aterosclerótica/metabolismo , Triterpenos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/patologia , Fator 2 Relacionado a NF-E2/análise , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Células THP-1 , Fator de Necrose Tumoral alfa/análise
2.
Vascul Pharmacol ; 128-129: 106675, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32200116

RESUMO

The transformation of macrophages to foam cells is a critical component in atherosclerotic lesion formation. Maslinic acid (MA), a novel natural pentacyclic triterpene, has cardioprotective and anti-inflammatory properties. It is hypothesized that MA can suppress monocyte recruitment to endothelial cells and inhibit macrophage foam cells formation. Previous study shows that MA inhibits inflammatory effects induced by sPLA2-IIA, including foam cells formation. This study elucidates the regulatory effect of MA in monocyte recruitment, macrophage lipid accumulation and cholesterol efflux. Our findings demonstrate that MA inhibits THP-1 monocyte adhesion to HUVEC cells in a TNFα-dependent and independent manner, but it induces trans-endothelial migration marginally at low concentration. MA down-regulates both gene and protein expression on VCAM-1 and MCP-1 in HUVECs. We further showed that MA suppresses macrophage foam cells formation, as indicated from the Oil-Red-O staining and flow cytometric analysis of intracellular lipids accumulation. The effects observed may be attributed to the antioxidant properties of MA where it was shown to suppress CuSO4-induced lipid peroxidation. MA inhibits scavenger receptors SR-A and CD36 expression while enhancing cholesterol efflux. MA enhances cholesterol efflux transporters ABCA1 and ABCG1 genes expression marginally without inducing its protein expression. In this study, MA was shown to target important steps that contribute to foam cell formation, including its ability in reducing monocytes adhesion to endothelial cells and LDL peroxidation, down-regulating scavenger receptors expression as well as enhancing cholesterol efflux, which might be of great importance in the context of atherosclerosis prevention and treatment.


Assuntos
Antioxidantes/farmacologia , Aterosclerose/tratamento farmacológico , Adesão Celular/efeitos dos fármacos , Colesterol/metabolismo , Células Espumosas/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Triterpenos/farmacologia , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Células Espumosas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Monócitos/metabolismo , Células THP-1 , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
3.
Mol Cell Biochem ; 447(1-2): 93-101, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29374817

RESUMO

Secretory phospholipase A2 (sPLA2) group of enzymes have been shown to hydrolyze phospholipids, among which sPLA2 Group V (GV) and Group X (GX) exhibit high selectivity towards phosphatidylcholine-rich cellular plasma membranes. The enzymes have recently emerged as key regulators in lipid droplets formation and it is hypothesized that sPLA2-GV and GX enhanced cell proliferation and lipid droplet accumulation in colon cancer cells (HT29). In this study, cell viability and lipid droplet accumulation were assessed by Resazurin assay and Oil-Red-O staining. Interestingly, both sPLA2-GV and GX enzymes reduced intracellular lipid droplet accumulation and did not significantly affect cell proliferation in HT29 cells. Incubation with varespladib, a pan-inhibitor of sPLA2-Group IIA/V/X, further suppressed lipid droplets accumulation in sPLA2-GV but have no effects in sPLA2-GX-treated cells. Further studies using catalytically inactive sPLA2 enzymes showed that the enzymes intrinsic catalytic activity is required for the net reduction of lipid accumulation. Meanwhile, inhibition of intracellular phospholipases (iPLA2-γ and cPLA2-α) unexpectedly enhanced lipid droplet accumulation in both sPLA2-GV and GX-treated cells. The findings suggested an interconnected relationship between extracellular and intracellular phospholipases in lipid cycling. Previous studies indicated that sPLA2 enzymes are linked to cancer development due to their ability to induce release of arachidonic acid and eicosanoids as well as the stimulation of lipid droplet formation. This study showed that the two enzymes work in a distinct manner and they neither confer proliferative advantage nor enhanced the net lipid droplet accumulation in HT29 cells.


Assuntos
Proliferação de Células , Neoplasias do Colo/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Proteínas de Neoplasias/metabolismo , Fosfolipases A2 Secretórias/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Humanos , Gotículas Lipídicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA