Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 10(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38206129

RESUMO

The extent of intraspecific genomic variation is key to understanding species evolutionary history, including recent adaptive shifts. Intraspecific genomic variation remains poorly explored in eukaryotic micro-organisms, especially in the nuclear dimorphic ciliates, despite their fundamental role as laboratory model systems and their ecological importance in many ecosystems. We sequenced the macronuclear genome of 22 laboratory strains of the oligohymenophoran Tetrahymena thermophila, a model species in both cellular biology and evolutionary ecology. We explored polymorphisms at the junctions of programmed eliminated sequences, and reveal their utility to barcode very closely related cells. As for other species of the genus Tetrahymena, we confirm micronuclear centromeres as gene diversification centres in T. thermophila, but also reveal a two-speed evolution in these regions. In the rest of the genome, we highlight recent diversification of genes coding for extracellular proteins and cell adhesion. We discuss all these findings in relation to this ciliate's ecology and cellular characteristics.


Assuntos
Tetrahymena thermophila , Tetrahymena thermophila/genética , Ecossistema , Genômica , Eucariotos , Laboratórios
2.
J Exp Zool A Ecol Integr Physiol ; 339(10): 1102-1115, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37723946

RESUMO

The colonization of novel environments requires a favorable response to conditions never, or rarely, encountered in recent evolutionary history. For example, populations colonizing upslope habitats must cope with lower atmospheric pressure at elevation, and thus reduced oxygen availability. The embryo stage in oviparous organisms is particularly susceptible, given its lack of mobility and limited gas exchange via diffusion through the eggshell and membranes. Especially little is known about responses of Lepidosaurian reptiles to reduced oxygen availability. To test the role of physiological plasticity during early development in response to high elevation hypoxia, we performed a transplant experiment with the viperine snake (Natrix maura, Linnaeus 1758). We maintained gravid females originating from low elevation populations (432 m above sea level [ASL]-normoxia) at both the elevation of origin and high elevation (2877 m ASL-extreme high elevation hypoxia; approximately 72% oxygen availability relative to sea level), then incubated egg clutches at both low and high elevation. Regardless of maternal exposure to hypoxia during gestation, embryos incubated at extreme high elevation exhibited altered developmental trajectories of cardiovascular function and metabolism across the incubation period, including a reduction in late-development egg mass. This physiological response may have contributed to the maintenance of similar incubation duration, hatching success, and hatchling body size compared to embryos incubated at low elevation. Nevertheless, after being maintained in hypoxia, juveniles exhibit reduced carbon dioxide production relative to oxygen consumption, suggesting altered energy pathways compared to juveniles maintained in normoxia. These findings highlight the role of physiological plasticity in maintaining rates of survival and fitness-relevant phenotypes in novel environments.


Assuntos
Colubridae , Feminino , Animais , Hipóxia/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio , Fenômenos Fisiológicos Cardiovasculares
3.
Trends Microbiol ; 30(2): 120-130, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34275698

RESUMO

Ciliates have an extraordinary genetic system in which each cell harbors two distinct kinds of nucleus, a transcriptionally active somatic nucleus and a quiescent germline nucleus. The latter undergoes classical, heritable genetic adaptation, while adaptation of the somatic nucleus is only short-term and thus disposable. The ecological and evolutionary relevance of this nuclear dimorphism have never been well formalized, which is surprising given the long history of using ciliates such as Tetrahymena and Paramecium as model organisms. We present a novel, alternative explanation for ciliate nuclear dimorphism which, we argue, should be considered an instrument of phenotypic plasticity by somatic selection on the level of the ciliate clone, as if it were a diffuse multicellular organism. This viewpoint helps to put some enigmatic aspects of ciliate biology into perspective and presents the diversity of ciliates as a large natural experiment that we can exploit to study phenotypic plasticity and organismality.


Assuntos
Cilióforos , Paramecium , Adaptação Fisiológica/genética , Evolução Biológica , Cilióforos/genética , Paramecium/genética
4.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34694402

RESUMO

It is commonly assumed that increasing the number of characters has the potential to resolve evolutionary radiations. Here, we studied photosynthetic stramenopiles (Ochrophyta) using alignments of heterogeneous origin mitochondrion, plastid, and nucleus. Surprisingly while statistical support for the relationships between the six major Ochrophyta lineages increases when comparing the mitochondrion (6,762 sites) and plastid (21,692 sites) trees, it decreases in the nuclear (209,105 sites) tree. Statistical support is not simply related to the data set size but also to the quantity of phylogenetic signal available at each position and our ability to extract it. Here, we show that this ability for current phylogenetic methods is limited, because conflicting results were obtained when varying taxon sampling. Even though the use of a better fitting model improved signal extraction and reduced the observed conflicts, the plastid data set provided higher statistical support for the ochrophyte radiation than the larger nucleus data set. We propose that the higher support observed in the plastid tree is due to an acceleration of the evolutionary rate in one short deep internal branch, implying that more phylogenetic signal per position is available to resolve the Ochrophyta radiation in the plastid than in the nuclear data set. Our work therefore suggests that, in order to resolve radiations, beyond the obvious use of data sets with more positions, we need to continue developing models of sequence evolution that better extract the phylogenetic signal and design methods to search for genes/characters that contain more signal specifically for short internal branches.


Assuntos
Estramenópilas , Filogenia , Plastídeos/genética
5.
BMC Res Notes ; 14(1): 306, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372933

RESUMO

OBJECTIVES: Complex algae are photosynthetic organisms resulting from eukaryote-to-eukaryote endosymbiotic-like interactions. Yet the specific lineages and mechanisms are still under debate. That is why large scale phylogenomic studies are needed. Whereas available proteomes provide a limited diversity of complex algae, MMETSP (Marine Microbial Eukaryote Transcriptome Sequencing Project) transcriptomes represent a valuable resource for phylogenomic analyses, owing to their broad and rich taxonomic sampling, especially of photosynthetic species. Unfortunately, this sampling is unbalanced and sometimes highly redundant. Moreover, we observed contaminated sequences in some samples. In such a context, tree inference and readability are impaired. Consequently, the aim of the data processing reported here is to release a unique set of clean and non-redundant transcriptomes produced through an original protocol featuring decontamination, pooling and dereplication steps. DATA DESCRIPTION: We submitted 678 MMETSP re-assembly samples to our parallel consolidation pipeline. Hence, we combined 423 samples into 110 consolidated transcriptomes, after the systematic removal of the most contaminated samples (186). This approach resulted in a total of 224 high-quality transcriptomes, easy to use and suitable to compute less contaminated, less redundant and more balanced phylogenies.


Assuntos
Eucariotos , Transcriptoma , Descontaminação , Eucariotos/genética , Filogenia , Plantas , Transcriptoma/genética
6.
iScience ; 24(8): 102915, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34430806

RESUMO

Dispersal is the movement of organisms from one habitat to another that potentially results in gene flow. It is often plastic, allowing organisms to adjust dispersal movements depending on environmental conditions. A fundamental aim in ecology is to understand the determinants underlying dispersal and its plasticity. We utilized 22 strains of the ciliate Tetrahymena thermophila to determine if different phenotypic dispersal strategies co-exist within a species and which mechanisms underlie this variability. We quantified the cell morphologies impacting cell motility and dispersal. Distinct differences in innate cellular morphology and dispersal rates were detected, but no universally utilized combinations of morphological parameters correlate with dispersal. Rather, multiple distinct and plastic morphological changes impact cilia-dependent motility during dispersal, especially in proficient dispersing strains facing challenging environmental conditions. Combining ecology and cell biology experiments, we show that dispersal can be promoted through plastic motility-associated changes to cell morphology and motile cilia.

7.
BMC Res Notes ; 14(1): 143, 2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33865444

RESUMO

OBJECTIVES: Identifying orthology relationships among sequences is essential to understand evolution, diversity of life and ancestry among organisms. To build alignments of orthologous sequences, phylogenomic pipelines often start with all-vs-all similarity searches, followed by a clustering step. For the protein clusters (orthogroups) to be as accurate as possible, proteomes of good quality are needed. Here, our objective is to assemble a data set especially suited for the phylogenomic study of algae and formerly photosynthetic eukaryotes, which implies the proper integration of organellar data, to enable distinguishing between several copies of one gene (paralogs), taking into account their cellular compartment, if necessary. DATA DESCRIPTION: We submitted 73 top-quality and taxonomically diverse proteomes to OrthoFinder. We obtained 47,266 orthogroups and identified 11,775 orthogroups with at least two algae. Whenever possible, sequences were functionally annotated with eggNOG and tagged after their genomic and target compartment(s). Then we aligned and computed phylogenetic trees for the orthogroups with IQ-TREE. Finally, these trees were further processed by identifying and pruning the subtrees exclusively composed of plastid-bearing organisms to yield a set of 31,784 clans suitable for studying photosynthetic organism genome evolution.


Assuntos
Eucariotos/genética , Filogenia , Plastídeos/genética , Evolução Molecular , Genoma , Plantas
8.
Sci Adv ; 7(12)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33741592

RESUMO

The bilaterally symmetric animals (Bilateria) are considered to comprise two monophyletic groups, Protostomia (Ecdysozoa and the Lophotrochozoa) and Deuterostomia (Chordata and the Xenambulacraria). Recent molecular phylogenetic studies have not consistently supported deuterostome monophyly. Here, we compare support for Protostomia and Deuterostomia using multiple, independent phylogenomic datasets. As expected, Protostomia is always strongly supported, especially by longer and higher-quality genes. Support for Deuterostomia, however, is always equivocal and barely higher than support for paraphyletic alternatives. Conditions that cause tree reconstruction errors-inadequate models, short internal branches, faster evolving genes, and unequal branch lengths-coincide with support for monophyletic deuterostomes. Simulation experiments show that support for Deuterostomia could be explained by systematic error. The branch between bilaterian and deuterostome common ancestors is, at best, very short, supporting the idea that the bilaterian ancestor may have been deuterostome-like. Our findings have important implications for the understanding of early animal evolution.


Assuntos
Evolução Molecular , Invertebrados , Animais , Invertebrados/genética , Filogenia
9.
Mol Phylogenet Evol ; 155: 106967, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33031928

RESUMO

Hybridization can leave genealogical signatures in an organism's genome, originating from the parental lineages and persisting over time. This potentially confounds phylogenetic inference methods that aim to represent evolution as a strictly bifurcating tree. We apply a phylotranscriptomic approach to study the evolutionary history of, and test for inter-lineage introgression in the Salamandridae, a Holarctic salamanders group of interest in studies of toxicity and aposematism, courtship behavior, and molecular evolution. Although the relationships between the 21 currently recognized salamandrid genera have been the subject of numerous molecular phylogenetic studies, some branches have remained controversial and sometimes affected by discordances between mitochondrial vs. nuclear trees. To resolve the phylogeny of this family, and understand the source of mito-nuclear discordance, we generated new transcriptomic (RNAseq) data for 20 salamandrids and used these along with published data, including 28 mitochondrial genomes, to obtain a comprehensive nuclear and mitochondrial perspective on salamandrid evolution. Our final phylotranscriptomic data set included 5455 gene alignments for 40 species representing 17 of the 21 salamandrid genera. Using concatenation and species-tree phylogenetic methods, we find (1) Salamandrina sister to the clade of the "True Salamanders" (consisting of Chioglossa, Mertensiella, Lyciasalamandra, and Salamandra), (2) Ichthyosaura sister to the Near Eastern genera Neurergus and Ommatotriton, (3) Triturus sister to Lissotriton, and (4) Cynops paraphyletic with respect to Paramesotriton and Pachytriton. Combining introgression tests and phylogenetic networks, we find evidence for introgression among taxa within the clades of "Modern Asian Newts" and "Modern European Newts". However, we could not unambiguously identify the number, position, and direction of introgressive events. Combining evidence from nuclear gene analysis with the observed mito-nuclear phylogenetic discordances, we hypothesize a scenario with hybridization and mitochondrial capture among ancestral lineages of (1) Lissotriton into Ichthyosaura and (2) Triturus into Calotriton, plus introgression of nuclear genes from Triturus into Lissotriton. Furthermore, both mitochondrial capture and nuclear introgression may have occurred among lineages assigned to Cynops. More comprehensive genomic data will, in the future, allow testing this against alternative scenarios involving hybridization with other, extinct lineages of newts.


Assuntos
Hibridização Genética , Filogenia , Urodelos/classificação , Urodelos/genética , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Genoma Mitocondrial , Mitocôndrias/genética , Transcriptoma/genética
10.
Mol Biol Evol ; 37(11): 3389-3396, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32602888

RESUMO

Orthology assignment is a key step of comparative genomic studies, for which many bioinformatic tools have been developed. However, all gene clustering pipelines are based on the analysis of protein distances, which are subject to many artifacts. In this article, we introduce Broccoli, a user-friendly pipeline designed to infer, with high precision, orthologous groups, and pairs of proteins using a phylogeny-based approach. Briefly, Broccoli performs ultrafast phylogenetic analyses on most proteins and builds a network of orthologous relationships. Orthologous groups are then identified from the network using a parameter-free machine learning algorithm. Broccoli is also able to detect chimeric proteins resulting from gene-fusion events and to assign these proteins to the corresponding orthologous groups. Tested on two benchmark data sets, Broccoli outperforms current orthology pipelines. In addition, Broccoli is scalable, with runtimes similar to those of recent distance-based pipelines. Given its high level of performance and efficiency, this new pipeline represents a suitable choice for comparative genomic studies. Broccoli is freely available at https://github.com/rderelle/Broccoli.


Assuntos
Genômica/métodos , Filogenia , Software , Proteínas Mutantes Quiméricas
11.
Integr Zool ; 15(6): 544-557, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32649806

RESUMO

Climate change is generating range shifts in many organisms, notably along the elevational gradient in mountainous environments. However, moving up in elevation exposes organisms to lower oxygen availability, which may reduce the successful reproduction and development of oviparous organisms. To test this possibility in an upward-colonizing species, we artificially incubated developing embryos of the viperine snake (Natrix maura) using a split-clutch design, in conditions of extreme high elevation (hypoxia at 2877 m above sea level; 72% sea-level equivalent O2 availability) or low elevation (control group; i.e. normoxia at 436 m above sea level). Hatching success did not differ between the two treatments. Embryos developing at extreme high elevation had higher heart rates and hatched earlier, resulting in hatchlings that were smaller in body size and slower swimmers compared to their siblings incubated at lower elevation. Furthermore, post-hatching reciprocal transplant of juveniles showed that snakes which developed at extreme high elevation, when transferred back to low elevation, did not recover full performance compared to their siblings from the low elevation incubation treatment. These results suggest that incubation at extreme high elevation, including the effects of hypoxia, will not prevent oviparous ectotherms from producing viable young, but may pose significant physiological challenges on developing offspring in ovo. These early-life performance limitations imposed by extreme high elevation could have negative consequences on adult phenotypes, including on fitness-related traits.


Assuntos
Altitude , Colubridae/embriologia , Oxigênio , Adaptação Fisiológica , Animais , Tamanho Corporal , Colubridae/fisiologia , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/fisiologia , Feminino , Frequência Cardíaca , Masculino , Natação/fisiologia
12.
Proc Natl Acad Sci U S A ; 117(10): 5358-5363, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094163

RESUMO

Although aerobic respiration is a hallmark of eukaryotes, a few unicellular lineages, growing in hypoxic environments, have secondarily lost this ability. In the absence of oxygen, the mitochondria of these organisms have lost all or parts of their genomes and evolved into mitochondria-related organelles (MROs). There has been debate regarding the presence of MROs in animals. Using deep sequencing approaches, we discovered that a member of the Cnidaria, the myxozoan Henneguya salminicola, has no mitochondrial genome, and thus has lost the ability to perform aerobic cellular respiration. This indicates that these core eukaryotic features are not ubiquitous among animals. Our analyses suggest that H. salminicola lost not only its mitochondrial genome but also nearly all nuclear genes involved in transcription and replication of the mitochondrial genome. In contrast, we identified many genes that encode proteins involved in other mitochondrial pathways and determined that genes involved in aerobic respiration or mitochondrial DNA replication were either absent or present only as pseudogenes. As a control, we used the same sequencing and annotation methods to show that a closely related myxozoan, Myxobolus squamalis, has a mitochondrial genome. The molecular results are supported by fluorescence micrographs, which show the presence of mitochondrial DNA in M. squamalis, but not in H. salminicola. Our discovery confirms that adaptation to an anaerobic environment is not unique to single-celled eukaryotes, but has also evolved in a multicellular, parasitic animal. Hence, H. salminicola provides an opportunity for understanding the evolutionary transition from an aerobic to an exclusive anaerobic metabolism.


Assuntos
Genoma Mitocondrial , Interações Hospedeiro-Parasita , Myxozoa/classificação , Myxozoa/genética , Salmão/parasitologia , Animais , Filogenia
13.
Curr Biol ; 29(21): R1110-R1118, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689391

RESUMO

Our planet is teeming with an astounding diversity of plants. In a mere single group of closely related species, tremendous diversity can be observed in their form and function - the colour of petals in flowering plants, the shape of the fronds in ferns, and the branching pattern of the gametophyte in mosses. Diversity can also be found in subtler traits, such as the resistance to pathogens or the ability to recruit symbiotic microbes from the environment. Plant traits can also be highly conserved - at the cellular and metabolic levels, entire biosynthetic pathways are present in all plant groups, and morphological characteristics such as vascular tissues have been conserved for hundreds of millions of years. The research community that seeks to understand these traits - both the diverse and the conserved - by taking an evolutionary point-of-view on plant biology is growing. Here, we summarize a subset of the different aspects of plant evolutionary biology, provide a guide for structuring comparative biology approaches and discuss the pitfalls that (plant) researchers should avoid when embarking on such studies.


Assuntos
Evolução Biológica , Características de História de Vida , Plantas
14.
Nat Commun ; 10(1): 4077, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501432

RESUMO

Climatic conditions changing over time and space shape the evolution of organisms at multiple levels, including temperate lizards in the family Lacertidae. Here we reconstruct a dated phylogenetic tree of 262 lacertid species based on a supermatrix relying on novel phylogenomic datasets and fossil calibrations. Diversification of lacertids was accompanied by an increasing disparity among occupied bioclimatic niches, especially in the last 10 Ma, during a period of progressive global cooling. Temperate species also underwent a genome-wide slowdown in molecular substitution rates compared to tropical and desert-adapted lacertids. Evaporative water loss and preferred temperature are correlated with bioclimatic parameters, indicating physiological adaptations to climate. Tropical, but also some populations of cool-adapted species experience maximum temperatures close to their preferred temperatures. We hypothesize these species-specific physiological preferences may constitute a handicap to prevail under rapid global warming, and contribute to explaining local lizard extinctions in cool and humid climates.


Assuntos
Meio Ambiente , Variação Genética , Genoma , Lagartos/genética , Lagartos/fisiologia , Temperatura , Animais , Regulação da Temperatura Corporal/fisiologia , Clima , Evolução Molecular , Filogenia
15.
Curr Biol ; 29(11): 1818-1826.e6, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31104936

RESUMO

Xenoturbella and the acoelomorph worms (Xenacoelomorpha) are simple marine animals with controversial affinities. They have been placed as the sister group of all other bilaterian animals (Nephrozoa hypothesis), implying their simplicity is an ancient characteristic [1, 2]; alternatively, they have been linked to the complex Ambulacraria (echinoderms and hemichordates) in a clade called the Xenambulacraria [3-5], suggesting their simplicity evolved by reduction from a complex ancestor. The difficulty resolving this problem implies the phylogenetic signal supporting the correct solution is weak and affected by inadequate modeling, creating a misleading non-phylogenetic signal. The idea that the Nephrozoa hypothesis might be an artifact is prompted by the faster molecular evolutionary rate observed within the Acoelomorpha. Unequal rates of evolution are known to result in the systematic artifact of long branch attraction, which would be predicted to result in an attraction between long-branch acoelomorphs and the outgroup, pulling them toward the root [6]. Other biases inadequately accommodated by the models used can also have strong effects, exacerbated in the context of short internal branches and long terminal branches [7]. We have assembled a large and informative dataset to address this problem. Analyses designed to reduce or to emphasize misleading signals show the Nephrozoa hypothesis is supported under conditions expected to exacerbate errors, and the Xenambulacraria hypothesis is preferred in conditions designed to reduce errors. Our reanalyses of two other recently published datasets [1, 2] produce the same result. We conclude that the Xenacoelomorpha are simplified relatives of the Ambulacraria.


Assuntos
Evolução Biológica , Invertebrados/classificação , Filogenia , Animais , Cordados/classificação , Equinodermos/classificação , Invertebrados/anatomia & histologia
16.
BMC Evol Biol ; 19(1): 21, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30634908

RESUMO

BACKGROUND: Multiple Sequence Alignments (MSAs) are the starting point of molecular evolutionary analyses. Errors in MSAs generate a non-historical signal that can lead to incorrect inferences. Therefore, numerous efforts have been made to reduce the impact of alignment errors, by improving alignment algorithms and by developing methods to filter out poorly aligned regions. However, MSAs do not only contain alignment errors, but also primary sequence errors. Such errors may originate from sequencing errors, from assembly errors, or from erroneous structural annotations (such as incorrect intron/exon boundaries). Even though their existence is acknowledged, the impact of primary sequence errors on evolutionary inference is poorly characterized. RESULTS: In a first step to fill this gap, we have developed a program called HmmCleaner, which detects and eliminates these errors from MSAs. It uses profile hidden Markov models (pHMM) to identify sequence segments that poorly fit their MSA and selectively removes them. We assessed its performances using > 700 amino-acid MSAs from prokaryotes and eukaryotes, in which we introduced several types of simulated primary sequence errors. The sensitivity of HmmCleaner towards simulated primary sequence errors was > 95%. In a second step, we compared the impact of segment filtering software (HmmCleaner and PREQUAL) relative to commonly used block-filtering software (BMGE and TrimAI) on evolutionary analyses. Using real data from vertebrates, we observed that segment-filtering methods improve the quality of evolutionary inference more than the currently used block-filtering methods. The formers were especially effective at improving branch length inferences, and at reducing false positive rate during detection of positive selection. CONCLUSIONS: Segment filtering methods such as HmmCleaner accurately detect simulated primary sequence errors. Our results suggest that these errors are more detrimental than alignment errors. However, they also show that stochastic (sampling) error is predominant in single-gene evolutionary inferences. Therefore, we argue that MSA filtering should focus on segment instead of block removal and that more studies are required to find the optimal balance between accuracy improvement and stochastic error increase brought by data removal.


Assuntos
Evolução Molecular , Alinhamento de Sequência , Algoritmos , Sequência de Aminoácidos , Sequência Conservada , Filogenia , Software
17.
Mol Biol Evol ; 35(11): 2819-2834, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30203003

RESUMO

A key question in molecular evolutionary biology concerns the relative roles of mutation and selection in shaping genomic data. Moreover, features of mutation and selection are heterogeneous along the genome and over time. Mechanistic codon substitution models based on the mutation-selection framework are promising approaches to separating these effects. In practice, however, several complications arise, since accounting for such heterogeneities often implies handling models of high dimensionality (e.g., amino acid preferences), or leads to across-site dependence (e.g., CpG hypermutability), making the likelihood function intractable. Approximate Bayesian Computation (ABC) could address this latter issue. Here, we propose a new approach, named Conditional ABC (CABC), which combines the sampling efficiency of MCMC and the flexibility of ABC. To illustrate the potential of the CABC approach, we apply it to the study of mammalian CpG hypermutability based on a new mutation-level parameter implying dependence across adjacent sites, combined with site-specific purifying selection on amino-acids captured by a Dirichlet process. Our proof-of-concept of the CABC methodology opens new modeling perspectives. Our application of the method reveals a high level of heterogeneity of CpG hypermutability across loci and mild heterogeneity across taxonomic groups; and finally, we show that CpG hypermutability is an important evolutionary factor in rendering relative synonymous codon usage. All source code is available as a GitHub repository (https://github.com/Simonll/LikelihoodFreePhylogenetics.git).


Assuntos
Evolução Molecular , Técnicas Genéticas , Modelos Genéticos , Mutação , Seleção Genética , Animais , Teorema de Bayes , Humanos , Mamíferos/genética , Método de Monte Carlo
18.
PLoS One ; 13(7): e0200323, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30044797

RESUMO

Publicly available genomes are crucial for phylogenetic and metagenomic studies, in which contaminating sequences can be the cause of major problems. This issue is expected to be especially important for Cyanobacteria because axenic strains are notoriously difficult to obtain and keep in culture. Yet, despite their great scientific interest, no data are currently available concerning the quality of publicly available cyanobacterial genomes. As reliably detecting contaminants is a complex task, we designed a pipeline combining six methods in a consensus strategy to assess the contamination level of 440 genome assemblies of Cyanobacteria. Two methods are based on published reference databases of ribosomal genes (SSU rRNA 16S and ribosomal proteins), one is indirectly based on a reference database of marker genes (CheckM), and three are based on complete genome analysis. Among those genome-wide methods, Kraken and DIAMOND blastx share the same reference database that we derived from Ensembl Bacteria, whereas CONCOCT does not require any reference database, instead relying on differences in DNA tetramer frequencies. Given that all the six methods appear to have their own strengths and limitations, we used the consensus of their rankings to infer that >5% of cyanobacterial genome assemblies are highly contaminated by foreign DNA (i.e., contaminants were detected by 5 or 6 methods). Our results will help researchers to check the quality of publicly available genomic data before use in their own analyses. Moreover, we argue that journals should make mandatory the submission of raw read data along with genome assemblies in order to facilitate the detection of contaminants in sequence databases.


Assuntos
Cianobactérias/genética , Contaminação por DNA , Genoma Bacteriano/genética , Consenso , DNA Bacteriano/genética , Genes de RNAr/genética , Marcadores Genéticos/genética
19.
BMC Biol ; 16(1): 39, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29653534

RESUMO

BACKGROUND: Tunicates are the closest relatives of vertebrates and are widely used as models to study the evolutionary developmental biology of chordates. Their phylogeny, however, remains poorly understood, and to date, only the 18S rRNA nuclear gene and mitogenomes have been used to delineate the major groups of tunicates. To resolve their evolutionary relationships and provide a first estimate of their divergence times, we used a transcriptomic approach to build a phylogenomic dataset including all major tunicate lineages, consisting of 258 evolutionarily conserved orthologous genes from representative species. RESULTS: Phylogenetic analyses using site-heterogeneous CAT mixture models of amino acid sequence evolution resulted in a strongly supported tree topology resolving the relationships among four major tunicate clades: (1) Appendicularia, (2) Thaliacea + Phlebobranchia + Aplousobranchia, (3) Molgulidae, and (4) Styelidae + Pyuridae. Notably, the morphologically derived Thaliacea are confirmed as the sister group of the clade uniting Phlebobranchia + Aplousobranchia within which the precise position of the model ascidian genus Ciona remains uncertain. Relaxed molecular clock analyses accommodating the accelerated evolutionary rate of tunicates reveal ancient diversification (~ 450-350 million years ago) among the major groups and allow one to compare their evolutionary age with respect to the major vertebrate model lineages. CONCLUSIONS: Our study represents the most comprehensive phylogenomic dataset for the main tunicate lineages. It offers a reference phylogenetic framework and first tentative timescale for tunicates, allowing a direct comparison with vertebrate model species in comparative genomics and evolutionary developmental biology studies.


Assuntos
Evolução Molecular , Genômica/métodos , Filogenia , Transcriptoma/genética , Urocordados/genética , Animais , RNA Ribossômico 18S/genética , Urocordados/classificação
20.
Mol Biol Evol ; 35(6): 1463-1472, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29596640

RESUMO

Detecting selection on codon usage (CU) is a difficult task, since CU can be shaped by both the mutational process and selective constraints operating at the DNA, RNA, and protein levels. Yang and Nielsen (2008) developed a test (which we call CUYN) for detecting selection on CU using two competing mutation-selection models of codon substitution. The null model assumes that CU is determined by the mutation bias alone, whereas the alternative model assumes that both mutation bias and/or selection act on CU. In applications on mammalian-scale alignments, the CUYN test detects selection on CU for numerous genes. This is surprising, given the small effective population size of mammals, and prompted us to use simulations to evaluate the robustness of the test to model violations. Simulations using a modest level of CpG hypermutability completely mislead the test, with 100% false positives. Surprisingly, a high level of false positives (56.1%) resulted simply from using the HKY mutation-level parameterization within the CUYN test on simulations conducted with a GTR mutation-level parameterization. Finally, by using a crude optimization procedure on a parameter controlling the CpG hypermutability rate, we find that this mutational property could explain a very large part of the observed mammalian CU. Altogether, our work emphasizes the need to evaluate the potential impact of model violations on statistical tests in the field of molecular phylogenetic analysis. The source code of the simulator and the mammalian genes used are available as a GitHub repository (https://github.com/Simonll/LikelihoodFreePhylogenetics.git).


Assuntos
Modelos Genéticos , Seleção Genética , Mutação Silenciosa , Animais , Códon , Simulação por Computador , Mamíferos , Mutação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA