Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diagn Microbiol Infect Dis ; 99(4): 115294, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33387896

RESUMO

There remains an urgent need for assays to quantify humoral protective immunity to SARS-CoV-2 to understand the immune responses of COVID-19 patients, evaluate efficacy of vaccine candidates in clinical trials, and conduct large-scale epidemiological studies. The plaque-reduction neutralization test (PRNT) is the reference-standard for quantifying antibodies capable of neutralizing SARS-CoV-2. However, the PRNT is logistically demanding, time-consuming, and requires containment level-3 facilities to safely work with live virus. In contrast, a surrogate virus neutralization test (sVNT) manufactured by Genscript is a quick and simple assay that detects antibodies that inhibit the RBD-ACE2 interaction, crucial for virus entry into host cells. In this study, we evaluate the sensitivity, specificity, and cross-reactivity of the sVNT compared with the PRNT using both 50% and 90% SARS-CoV-2 neutralization as a reference-standard. We found that the sVNT provides a high-throughput screening tool prior to confirmatory PRNT testing for the evaluation of SARS-CoV-2 neutralizing antibodies.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , SARS-CoV-2/imunologia , Ensaio de Placa Viral/métodos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/diagnóstico , Ensaios de Triagem em Larga Escala/métodos , Humanos , Testes de Neutralização/métodos
2.
PLoS Pathog ; 8(11): e1003002, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144617

RESUMO

Prion diseases typically have long pre-clinical incubation periods during which time the infectious prion particle and infectivity steadily propagate in the brain. Abnormal neuritic sprouting and synaptic deficits are apparent during pre-clinical disease, however, gross neuronal loss is not detected until the onset of the clinical phase. The molecular events that accompany early neuronal damage and ultimately conclude with neuronal death remain obscure. In this study, we used laser capture microdissection to isolate hippocampal CA1 neurons and determined their pre-clinical transcriptional response during infection. We found that gene expression within these neurons is dynamic and characterized by distinct phases of activity. We found that a major cluster of genes is altered during pre-clinical disease after which expression either returns to basal levels, or alternatively undergoes a direct reversal during clinical disease. Strikingly, we show that this cluster contains a signature highly reminiscent of synaptic N-methyl-D-aspartic acid (NMDA) receptor signaling and the activation of neuroprotective pathways. Additionally, genes involved in neuronal projection and dendrite development were also altered throughout the disease, culminating in a general decline of gene expression for synaptic proteins. Similarly, deregulated miRNAs such as miR-132-3p, miR-124a-3p, miR-16-5p, miR-26a-5p, miR-29a-3p and miR-140-5p follow concomitant patterns of expression. This is the first in depth genomic study describing the pre-clinical response of hippocampal neurons to early prion replication. Our findings suggest that prion replication results in the persistent stimulation of a programmed response that is mediated, at least in part, by synaptic NMDA receptor activity that initially promotes cell survival and neurite remodelling. However, this response is terminated prior to the onset of clinical symptoms in the infected hippocampus, seemingly pointing to a critical juncture in the disease. Manipulation of these early neuroprotective pathways may redress the balance between degeneration and survival, providing a potential inroad for treatment.


Assuntos
Regulação da Expressão Gênica , Hipocampo/metabolismo , MicroRNAs/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Neurônios/metabolismo , Doenças Priônicas/metabolismo , Príons/metabolismo , Animais , Estudo de Associação Genômica Ampla , Hipocampo/patologia , Hipocampo/fisiopatologia , Camundongos , Neurônios/patologia , Doenças Priônicas/patologia , Doenças Priônicas/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA