RESUMO
Chronic inflammation contributes to the prevalence of cardiovascular disease in people living with HIV (PLWH). The immune mechanisms driving atherosclerosis progression in PLWH remain unclear. This study conducted comprehensive assessments of medium-sized coronary arteries and aorta from deceased PLWH and controls without HIV using DNA/RNA assays, spatial transcriptomics, and high-resolution mass spectrometry. Findings revealed more significant inflammation correlated with higher HIV copy numbers in late atheroma of PLWH. Enhanced CXCL12 and decreased ABCA1/ABCG1 expression in CD163+ macrophages were co-localized in coronaries of PLWH, suggesting a reduction in plasma lipoprotein clearance compared to controls. Spatial analyses identified potential therapeutic targets by revealing inflammatory changes in medium-sized arteries and the aorta. We examined the relationship between atherosclerotic phenotypes and inflammatory gene expression in Vanderbilts Biobank to study these findings in a larger clinical cohort. This established a significant association between ABCA1 and CXCL12 gene expressions with atherosclerosis, partly influenced by HIV.
RESUMO
The liver, the largest internal organ and a metabolic hub, undergoes significant declines due to aging, affecting mitochondrial function and increasing the risk of systemic liver diseases. How the mitochondrial three-dimensional (3D) structure changes in the liver across aging, and the biological mechanisms regulating such changes confers remain unclear. In this study, we employed Serial Block Face-Scanning Electron Microscopy (SBF-SEM) to achieve high-resolution 3D reconstructions of murine liver mitochondria to observe diverse phenotypes and structural alterations that occur with age, marked by a reduction in size and complexity. We also show concomitant metabolomic and lipidomic changes in aged samples. Aged human samples reflected altered disease risk. To find potential regulators of this change, we examined the Mitochondrial Contact Site and Cristae Organizing System (MICOS) complex, which plays a crucial role in maintaining mitochondrial architecture. We observe that the MICOS complex is lost during aging, but not Sam50. Sam50 is a component of the sorting and assembly machinery (SAM) complex that acts in tandem with the MICOS complex to modulate cristae morphology. In murine models subjected to a high-fat diet, there is a marked depletion of the mitochondrial protein SAM50. This reduction in Sam50 expression may heighten the susceptibility to liver disease, as our human biobank studies corroborate that Sam50 plays a genetically regulated role in the predisposition to multiple liver diseases. We further show that changes in mitochondrial calcium dysregulation and oxidative stress accompany the disruption of the MICOS complex. Together, we establish that a decrease in mitochondrial complexity and dysregulated metabolism occur with murine liver aging. While these changes are partially be regulated by age-related loss of the MICOS complex, the confluence of a murine high-fat diet can also cause loss of Sam50, which contributes to liver diseases. In summary, our study reveals potential regulators that affect age-related changes in mitochondrial structure and metabolism, which can be targeted in future therapeutic techniques.
RESUMO
Experimental evolution studies that feature selection on life-history characters are a proven approach for studying the evolution of aging and variation in rates of senescence. Recently, the incorporation of genomic and transcriptomic approaches into this framework has led to the identification of hundreds of genes associated with different aging patterns. However, our understanding of the specific molecular mechanisms underlying these aging patterns remains limited. Here, we incorporated extensive metabolomic profiling into this framework to generate mechanistic insights into aging patterns in Drosophila melanogaster . Specifically, we characterized metabolomic change over time associated with accelerated aging in populations of D. melanogaster under selection for early reproduction compared to their controls. Using this data we: i) evaluated the evolutionary repeatability across the metabolome; ii) evaluated the value of the metabolome as a predictor of "biological age" in this system; and iii) identified specific metabolic pathways associated with accelerated aging. Generally, our findings suggest that the metabolome is a reliable predictor of age and senescence in populations that share a recent evolutionary history. Metabolomic analysis revealed that generations of selection for early reproduction resulted in highly repeatable alterations to the metabolome. Specifically, changes in carbohydrate, amino acid, and TCA cycle-related metabolite abundances over time point to metabolic remodeling that favors rapid early reproduction with long-term consequences for carbohydrate and protein utilization.
RESUMO
The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health.
RESUMO
Age-related atrophy of skeletal muscle, is characterized by loss of mass, strength, endurance, and oxidative capacity during aging. Notably, bioenergetics and protein turnover studies have shown that mitochondria mediate this decline in function. Although exercise has been the only therapy to mitigate sarcopenia, the mechanisms that govern how exercise serves to promote healthy muscle aging are unclear. Mitochondrial aging is associated with decreased mitochondrial capacity, so we sought to investigate how aging affects mitochondrial structure and potential age-related regulators. Specifically, the three-dimensional (3D) mitochondrial structure associated with morphological changes in skeletal muscle during aging requires further elucidation. We hypothesized that aging causes structural remodeling of mitochondrial 3D architecture representative of dysfunction, and this effect is mitigated by exercise. We used serial block-face scanning electron microscopy to image human skeletal tissue samples, followed by manual contour tracing using Amira software for 3D reconstruction and subsequent analysis of mitochondria. We then applied a rigorous in vitro and in vivo exercise regimen during aging. Across 5 human cohorts, we correlate differences in magnetic resonance imaging, mitochondria 3D structure, exercise parameters, and plasma immune markers between young (under 50 years) and old (over 50 years) individuals. We found that mitochondria we less spherical and more complex, indicating age-related declines in contact site capacity. Additionally, aged samples showed a larger volume phenotype in both female and male humans, indicating potential mitochondrial swelling. Concomitantly, muscle area, exercise capacity, and mitochondrial dynamic proteins showed age-related losses. Exercise stimulation restored mitofusin 2 (MFN2), one such of these mitochondrial dynamic proteins, which we show is required for the integrity of mitochondrial structure. Furthermore, we show that this pathway is evolutionarily conserved as Marf, the MFN2 ortholog in Drosophila, knockdown alters mitochondrial morphology and leads to the downregulation of genes regulating mitochondrial processes. Our results define age-related structural changes in mitochondria and further suggest that exercise may mitigate age-related structural decline through modulation of mitofusin 2.
RESUMO
Dissecting the molecular basis of adaptation remains elusive despite our ability to sequence genomes and transcriptomes. At present, most genomic research on selection focusses on signatures of selective sweeps in patterns of heterozygosity. Other research has studied changes in patterns of gene expression in evolving populations but has not usually identified the genetic changes causing these shifts in expression. Here we attempt to go beyond these approaches by using machine learning tools to explore interactions between the genome, transcriptome, and life-history phenotypes in two groups of 10 experimentally evolved Drosophila populations subjected to selection for opposing life history patterns. Our findings indicate that genomic and transcriptomic data have comparable power for predicting phenotypic characters. Looking at the relationships between the genome and the transcriptome, we find that the expression of individual transcripts is influenced by many sites across the genome that are differentiated between the two types of populations. We find that single-nucleotide polymorphisms (SNPs), transposable elements, and indels are powerful predictors of gene expression. Collectively, our results suggest that the genomic architecture of adaptation is highly polygenic with extensive pleiotropy.
Assuntos
Drosophila , Genômica , Animais , Drosophila/genética , Perfilação da Expressão Gênica , Heterozigoto , Mutação INDELRESUMO
This study, utilizing SBF-SEM, reveals structural alterations in mitochondria and myofibrils in human heart failure (HF). Mitochondria in HF show changes in structure, while myofibrils exhibit increased cross-sectional area and branching. Metabolomic and lipidomic analyses indicate concomitant dysregulation in key pathways. The findings underscore the need for personalized treatments considering individualized structural changes in HF.
RESUMO
During aging, muscle gradually undergoes sarcopenia, the loss of function associated with loss of mass, strength, endurance, and oxidative capacity. However, the 3D structural alterations of mitochondria associated with aging in skeletal muscle and cardiac tissues are not well described. Although mitochondrial aging is associated with decreased mitochondrial capacity, the genes responsible for the morphological changes in mitochondria during aging are poorly characterized. We measured changes in mitochondrial morphology in aged murine gastrocnemius, soleus, and cardiac tissues using serial block-face scanning electron microscopy and 3D reconstructions. We also used reverse transcriptase-quantitative PCR, transmission electron microscopy quantification, Seahorse analysis, and metabolomics and lipidomics to measure changes in mitochondrial morphology and function after loss of mitochondria contact site and cristae organizing system (MICOS) complex genes, Chchd3, Chchd6, and Mitofilin. We identified significant changes in mitochondrial size in aged murine gastrocnemius, soleus, and cardiac tissues. We found that both age-related loss of the MICOS complex and knockouts of MICOS genes in mice altered mitochondrial morphology. Given the critical role of mitochondria in maintaining cellular metabolism, we characterized the metabolomes and lipidomes of young and aged mouse tissues, which showed profound alterations consistent with changes in membrane integrity, supporting our observations of age-related changes in muscle tissues. We found a relationship between changes in the MICOS complex and aging. Thus, it is important to understand the mechanisms that underlie the tissue-dependent 3D mitochondrial phenotypic changes that occur in aging and the evolutionary conservation of these mechanisms between Drosophila and mammals.
Assuntos
Imageamento Tridimensional , Membranas Associadas à Mitocôndria , Camundongos , Animais , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , DNA Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Mamíferos/genética , Mamíferos/metabolismoRESUMO
With sparse treatment options, cardiac disease remains a significant cause of death among humans. As a person ages, mitochondria breakdown and the heart becomes less efficient. Heart failure is linked to many mitochondria-associated processes, including endoplasmic reticulum stress, mitochondrial bioenergetics, insulin signaling, autophagy, and oxidative stress. The roles of key mitochondrial complexes that dictate the ultrastructure, such as the mitochondrial contact site and cristae organizing system (MICOS), in aging cardiac muscle are poorly understood. To better understand the cause of age-related alteration in mitochondrial structure in cardiac muscle, we used transmission electron microscopy (TEM) and serial block facing-scanning electron microscopy (SBF-SEM) to quantitatively analyze the three-dimensional (3-D) networks in cardiac muscle samples of male mice at aging intervals of 3 mo, 1 yr, and 2 yr. Here, we present the loss of cristae morphology, the inner folds of the mitochondria, across age. In conjunction with this, the three-dimensional (3-D) volume of mitochondria decreased. These findings mimicked observed phenotypes in murine cardiac fibroblasts with CRISPR/Cas9 knockout of Mitofilin, Chchd3, Chchd6 (some members of the MICOS complex), and Opa1, which showed poorer oxidative consumption rate and mitochondria with decreased mitochondrial length and volume. In combination, these data show the need to explore if loss of the MICOS complex in the heart may be involved in age-associated mitochondrial and cristae structural changes.NEW & NOTEWORTHY This article shows how mitochondria in murine cardiac changes, importantly elucidating age-related changes. It also is the first to show that the MICOS complex may play a role in outer membrane mitochondrial structure.
Assuntos
Mitocôndrias , Miocárdio , Humanos , Masculino , Camundongos , Animais , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Coração , Envelhecimento , Transdução de Sinais , Proteínas Mitocondriais/metabolismoRESUMO
Despite tremendous diversity, Asian Americans in STEM are grouped and viewed as a homogeneous monolith, facing stereotypes and disparities. We propose solutions that include disaggregating the Asian American grouping and recognizing the diverse individual ethnic subgroups that comprise Americans of Asian ancestry to implement change within the STEM field.
Assuntos
Asiático , Humanos , Estados UnidosRESUMO
The number of diversity, equity, and inclusion (DEI) initiatives in science, technology, engineering, mathematics, and medicine (STEMM) have grown over the last few years. We asked several Black scientists what impact they have and why STEMM still needs them. They answer these questions and describe how DEI initiatives should evolve.
Assuntos
População Negra , Engenharia , Humanos , TecnologiaRESUMO
Drosophila experimental evolution, with its well-defined selection protocols, has long supplied useful genetic material for the analysis of functional physiology. While there is a long tradition of interpreting the effects of large-effect mutants physiologically, identifying and interpreting gene-to-phenotype relationships has been challenging in the genomic era, with many labs not resolving how physiological traits are affected by multiple genes throughout the genome. Drosophila experimental evolution has demonstrated that multiple phenotypes change because of the evolution of many loci across the genome, creating the scientific challenge of sifting out differentiated but noncausal loci for individual characters. The fused lasso additive model method allows us to infer some of the differentiated loci that have relatively greater causal effects on the differentiation of specific phenotypes. The experimental material that we use in the present study comes from 50 populations that have been selected for different life histories and levels of stress resistance. Differentiation of cardiac robustness, starvation resistance, desiccation resistance, lipid content, glycogen content, water content, and body masses was assayed among 40-50 of these experimentally evolved populations. Through the fused lasso additive model, we combined physiological analyses from eight parameters with whole-body pooled-seq genomic data to identify potentially causally linked genomic regions. We have identified approximately 2,176 significantly differentiated 50-kb genomic windows among our 50 populations, with 142 of those identified genomic regions that are highly likely to have a causal effect connecting specific genome sites to specific physiological characters.
Assuntos
Drosophila , Inanição , Animais , Drosophila/genética , Drosophila melanogaster/genética , Fenótipo , Aprendizado de MáquinaRESUMO
Experimental evolution with Drosophila melanogaster has been used extensively for decades to study aging and longevity. In recent years, the addition of DNA and RNA sequencing to this framework has allowed researchers to leverage the statistical power inherent to experimental evolution to study the genetic basis of longevity itself. Here, we incorporated metabolomic data into to this framework to generate even deeper insights into the physiological and genetic mechanisms underlying longevity differences in three groups of experimentally evolved D. melanogaster populations with different aging and longevity patterns. Our metabolomic analysis found that aging alters mitochondrial metabolism through increased consumption of NAD+ and increased usage of the TCA cycle. Combining our genomic and metabolomic data produced a list of biologically relevant candidate genes. Among these candidates, we found significant enrichment for genes and pathways associated with neurological development and function, and carbohydrate metabolism. While we do not explicitly find enrichment for aging canonical genes, neurological dysregulation and carbohydrate metabolism are both known to be associated with accelerated aging and reduced longevity. Taken together, our results provide plausible genetic mechanisms for what might be driving longevity differences in this experimental system. More broadly, our findings demonstrate the value of combining multiple types of omic data with experimental evolution when attempting to dissect mechanisms underlying complex and highly polygenic traits such as aging.
Assuntos
Envelhecimento/genética , Drosophila melanogaster/fisiologia , Genômica/métodos , Metabolômica/métodos , Envelhecimento/metabolismo , Animais , Metabolismo dos Carboidratos , Ciclo do Ácido Cítrico , Evolução Molecular Direcionada , Drosophila melanogaster/genética , Longevidade , Mitocôndrias/metabolismo , Herança Multifatorial , NAD/metabolismo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
"Synthetic recombinant" populations have emerged as a useful tool for dissecting the genetics of complex traits. They can be used to derive inbred lines for fine QTL mapping, or the populations themselves can be sampled for experimental evolution. In the latter application, investigators generally value maximizing genetic variation in constructed populations. This is because in evolution experiments initiated from such populations, adaptation is primarily fueled by standing genetic variation. Despite this reality, little has been done to systematically evaluate how different methods of constructing synthetic populations shape initial patterns of variation. Here we seek to address this issue by comparing outcomes in synthetic recombinant Saccharomyces cerevisiae populations created using one of two strategies: pairwise crossing of isogenic strains or simple mixing of strains in equal proportion. We also explore the impact of the varying the number of parental strains. We find that more genetic variation is initially present and maintained when population construction includes a round of pairwise crossing. As perhaps expected, we also observe that increasing the number of parental strains typically increases genetic diversity. In summary, we suggest that when constructing populations for use in evolution experiments, simply mixing founder strains in equal proportion may limit the adaptive potential.
Assuntos
Cruzamentos Genéticos , Engenharia Genética , Variação Genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Frequência do Gene , Engenharia Genética/métodos , Genoma Fúngico , Genômica/métodos , Genótipo , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do GenomaRESUMO
The ability to predict how natural populations will evolve and adapt to major changes in environmental conditions has long been of interest to evolutionary biologists and ecologists alike. The reality of global climate change has also created a pressing need for advancement in this particular area of research, as species are increasingly faced with rapid shifts in abiotic and biotic conditions. Evolutionary genomics has the potential to be incredibly useful as we move forward in addressing this need and in particular, evolve and resequence (E&R) studies-where researchers combine experimental evolution with whole-genome sequencing-have an important role to play. However, while E&R studies have shown a great deal of promise in tackling fundamental questions regarding the genetics of adaptation (Long et al., 2015; Schlötterer et al., 2014), it is unclear whether results from laboratory experiments can be directly translated to natural populations. In a From the Cover article in this issue of Molecular Ecology, Hsu et al. (Mol Ecol, 29, 2020) explicitly contend with this issue by examining the overlap between genes implicated in thermal adaptation in a Drosophila melanogaster E&R study and genes identified by comparing natural populations from different latitudinal clines. They report significant correlations between the two sets of temperature-adaptive genes and ultimately conclude that E&R studies can indeed generate insights applicable to populations inhabiting complex natural environments. While more work is needed to assess the generality of these conclusions, Hsu and Belmouaden (Mol Ecol, 29, 2020) contribute an important precedent.
Assuntos
Drosophila melanogaster , Seleção Genética , Animais , Drosophila melanogaster/genética , Expressão Gênica , Genética Populacional , LaboratóriosRESUMO
"Evolve and resequence" (E&R) studies combine experimental evolution and whole-genome sequencing to interrogate the genetics underlying adaptation. Due to ease of handling, E&R work with asexual organisms such as bacteria can employ optimized experimental design, with large experiments and many generations of selection. By contrast, E&R experiments with sexually reproducing organisms are more difficult to implement, and design parameters vary dramatically among studies. Thus, efforts have been made to assess how these differences, such as number of independent replicates, or size of experimental populations, impact inference. We add to this work by investigating the role of time sampling-the number of discrete time points sequence data are collected from evolving populations. Using data from an E&R experiment with outcrossing Saccharomyces cerevisiae in which populations were sequenced 17 times over ~540 generations, we address the following questions: (a) Do more time points improve the ability to identify candidate regions underlying selection? And (b) does high-resolution sampling provide unique insight into evolutionary processes driving adaptation? We find that while time sampling does not improve the ability to identify candidate regions, high-resolution sampling does provide valuable opportunities to characterize evolutionary dynamics. Increased time sampling reveals three distinct trajectories for adaptive alleles: one consistent with classic population genetic theory (i.e., models assuming constant selection coefficients), and two where trajectories suggest more context-dependent responses (i.e., models involving dynamic selection coefficients). We conclude that while time sampling has limited impact on candidate region identification, sampling eight or more time points has clear benefits for studying complex evolutionary dynamics.
Assuntos
Saccharomyces cerevisiae , Seleção Genética , Adaptação Fisiológica , Alelos , Evolução Molecular , Saccharomyces cerevisiae/genéticaRESUMO
Experimental evolution allows the observation of change over time as laboratory populations evolve in response to novel, controlled environments. Microbial evolution experiments take advantage of cryopreservation to archive experimental populations in glycerol media, creating a frozen, living "fossil" record. Prior research with Escherichia coli has shown that cryopreservation conditions can affect cell viability and that allele frequencies across the genome can change in response to a freeze-thaw event. We expand on these observations by characterizing fitness and genomic consequences of multiple freeze-thaw cycles in diploid yeast populations. Our study system is a highly recombinant Saccharomyces cerevisiae population (SGRP-4X) that harbors standing genetic variation that cryopreservation may threaten. We also investigate the four parental isogenic strains crossed to create the SGRP-4X. We measure cell viability over five consecutive freeze-thaw cycles; whereas we find that viability increases over time in the evolved recombinant populations, we observe no such viability improvements in the parental strains. We also collect genome-wide sequence data from experimental populations initially, after one freeze-thaw, and after five freeze-thaw cycles. In the recombinant evolved populations, we find a region of significant allele frequency change on chromosome 15 containing the ALR1 gene. In the parental strains, we find little evidence for new mutations. We conclude that cryopreserving yeast populations with standing genetic variation may have both phenotypic and genomic consequences, though the same cryopreservation practices may have only small impacts on populations with little or no initial variation.
Assuntos
Criopreservação , Saccharomyces cerevisiae , Proteínas de Transporte de Cátions/genética , Frequência do Gene , Aptidão Genética , Variação Genética , Glicerol/toxicidade , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
In experimental evolution, we impose functional demands on laboratory populations of model organisms using selection. After enough generations of such selection, the resulting populations constitute excellent material for physiological research. An intense selection regime for increased starvation resistance was imposed on 10 large outbred Drosophila populations. We observed the selection responses of starvation and desiccation resistance, metabolic reserves, and heart robustness via electrical pacing. Furthermore, we sequenced the pooled genomes of these populations. As expected, significant increases in starvation resistance and lipid content were found in our 10 intensely selected SCO populations. The selection regime also improved desiccation resistance, water content, and glycogen content among these populations. Additionally, the average rate of cardiac arrests in our 10 obese SCO populations was double the rate of the 10 ancestral CO populations. Age-specific mortality rates were increased at early adult ages by selection. Genomic analysis revealed a large number of single nucleotide polymorphisms across the genome that changed in frequency as a result of selection. These genomic results were similar to those obtained in our laboratory from less direct selection procedures. The combination of extensive genomic and phenotypic differentiation between these 10 populations and their ancestors makes them a powerful system for the analysis of the physiological underpinnings of starvation resistance.
Assuntos
Drosophila melanogaster/genética , Genômica , Longevidade , Adaptação Fisiológica , Animais , Peso Corporal , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Seleção Genética , InaniçãoRESUMO
The genomic basis of ageing still remains unknown despite being a topic of study for many years. Here, we present data from 20 experimentally evolved laboratory populations of Drosophila melanogaster that have undergone two different life-history selection regimes. One set of ten populations demonstrates early ageing whereas the other set of ten populations shows postponed ageing. Additionally, both types of populations consist of five long standing populations and five recently derived populations. Our primary goal was to determine which genes exhibit changes in expression levels by comparing the female transcriptome of the two population sets at two different time points. Using three different sets of increasingly restrictive criteria, we found that 2.1-15.7% (82-629 genes) of the expressed genes are associated with differential ageing between population sets. Conversely, a comparison of recently derived populations to long-standing populations reveals little to no transcriptome differentiation, suggesting that the recent selection regime has had a larger impact on the transcriptome than its more distant evolutionary history. In addition, we found very little evidence for significant enrichment for functional attributes regardless of the set of criteria used. Relative to previous ageing studies, we find little overlap with other lists of aging related genes. The disparity between our results and previously published results is likely due to the high replication used in this study coupled with our use of highly differentiated populations. Our results reinforce the notion that the use of genomic, transcriptomic, and phenotypic data to uncover the genetic basis of a complex trait like ageing can benefit from experimental designs that use highly replicated, experimentally-evolved populations.
Assuntos
Envelhecimento/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Transcriptoma/genética , Adaptação Fisiológica , Animais , Evolução Biológica , Drosophila , Feminino , Perfilação da Expressão Gênica/métodos , Modelos Teóricos , Seleção GenéticaRESUMO
BACKGROUND: Studies combining experimental evolution and next-generation sequencing have found that adaptation in sexually reproducing populations is primarily fueled by standing genetic variation. Consequently, the response to selection is rapid and highly repeatable across replicate populations. Some studies suggest that the response to selection is highly repeatable at both the phenotypic and genomic levels, and that evolutionary history has little impact. Other studies suggest that even when the response to selection is repeatable phenotypically, evolutionary history can have significant impacts at the genomic level. Here we test two hypotheses that may explain this discrepancy. Hypothesis 1: Past intense selection reduces evolutionary repeatability at the genomic and phenotypic levels when conditions change. Hypothesis 2: Previous intense selection does not reduce evolutionary repeatability, but other evolutionary mechanisms may. We test these hypotheses using D. melanogaster populations that were subjected to 260 generations of intense selection for desiccation resistance and have since been under relaxed selection for the past 230 generations. RESULTS: We find that, with the exception of longevity and to a lesser extent fecundity, 230 generations of relaxed selection has erased the extreme phenotypic differentiation previously found. We also find no signs of genetic fixation, and only limited evidence of genetic differentiation between previously desiccation resistance selected populations and their controls. CONCLUSION: Our findings suggest that evolution in our system is highly repeatable even when populations have been previously subjected to bouts of extreme selection. We therefore conclude that evolutionary repeatability can overcome past bouts of extreme selection in Drosophila experimental evolution, provided experiments are sufficiently long and populations are not inbred.