Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38798543

RESUMO

As a first line of host defense, macrophages must be able to effectively sense and respond to diverse types of pathogens, and while a particular type of immune response may be beneficial in some circumstances, it can be detrimental in others. Upon infecting a macrophage, M. tuberculosis ( Mtb ) induces proinflammatory cytokines that activate antibacterial responses. Surprisingly, Mtb also triggers antiviral responses that actually hinder the ability of macrophages to control Mtb infection. The ubiquitin ligase CBL suppresses these antiviral responses and shifts macrophages toward a more antibacterial state during Mtb infection, however, the mechanisms by which CBL regulates immune signaling are unknown. We found that CBL controls responses to multiple stimuli and broadly suppresses the expression of antiviral effector genes. We then used mass-spectrometry to investigate potential CBL substrates and identified over 46,000 ubiquitylated peptides in Mtb -infected macrophages, as well as roughly 400 peptides with CBL35 dependent ubiquitylation. We then performed genetic interaction analysis of CBL and its putative substrates, and identified the Fas associated factor 2 (FAF2) adapter protein as a key signaling molecule protein downstream of CBL. Together, these analyses identify thousands of new ubiquitin-mediated signaling events during the innate immune response and reveal an important new regulatory hub in this response.

2.
Chem Res Toxicol ; 37(5): 675-684, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38598786

RESUMO

Air pollution consists of complex mixtures of chemicals with serious deleterious health effects from acute and chronic exposure. To help understand the mechanisms by which adverse effects occur, the present work examines the responses of cultured human epidermal keratinocytes to specific chemicals commonly found in woodsmoke. Our earlier findings with liquid smoke flavoring (aqueous extract of charred wood) revealed that such extracts stimulated the expression of genes associated with oxidative stress and proinflammatory response, activated the aryl hydrocarbon receptor, thereby inducing cytochrome P4501A1 activity, and induced cross-linked envelope formation, a lethal event ordinarily occurring during terminal differentiation. The present results showed that furfural produced transcriptional responses resembling those of liquid smoke, cyclohexanedione activated the aryl hydrocarbon receptor, and several chemicals induced envelope formation. Of these, syringol permeabilized the cells to the egress of lactate dehydrogenase at a concentration close to that yielding envelope formation, while furfural induced envelope formation without permeabilization detectable in this way. Furfural (but not syringol) stimulated the incorporation of amines into cell proteins in extracts in the absence of transglutaminase activity. Nevertheless, both chemicals substantially increased the amount of cellular protein incorporated into envelopes and greatly altered the envelope protein profile. Moreover, the proportion of keratin in the envelopes was dramatically increased. These findings are consistent with the chemically induced protein cross-linking in the cells. Elucidating mechanisms by which this phenomenon occurs may help understand how smoke chemicals interact with proteins to elicit cellular responses, interpret bioassays of complex pollutant mixtures, and suggest additional sensitive ways to monitor exposures.


Assuntos
Queratinócitos , Madeira , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Madeira/química , Fumaça/efeitos adversos , Furaldeído/análogos & derivados , Furaldeído/farmacologia , Células Cultivadas , Receptores de Hidrocarboneto Arílico/metabolismo
3.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585836

RESUMO

Tauopathies represent a diverse group of neurodegenerative disorders characterized by the abnormal aggregation of the microtubule-associated protein tau. Despite extensive research, the precise mechanisms underlying the complexity of different types of tau pathology remain incompletely understood. Here we describe an approach for proteomic profiling of aggregate-associated proteomes on slides with formalin-fixed, paraffin-embedded (FFPE) tissue that utilizes proximity labelling upon high preservation of aggregate morphology, which permits the profiling of pathological aggregates regardless of their size. To comprehensively investigate the common and unique protein interactors associated with the variety of tau lesions present across different human tauopathies, Alzheimer's disease (AD), corticobasal degeneration (CBD), Pick's disease (PiD), and progressive supranuclear palsy (PSP), were selected to represent the major tauopathy diseases. Implementation of our widely applicable Probe-dependent Proximity Profiling (ProPPr) strategy, using the AT8 antibody, permitted identification and quantification of proteins associated with phospho-tau lesions in well-characterized human post-mortem tissue. The analysis revealed both common and disease-specific proteins associated with phospho-tau aggregates, highlighting potential targets for therapeutic intervention and biomarker development. Candidate validation through high-resolution co-immunofluorescence of distinct aggregates across disease and control cases, confirmed the association of retromer complex protein VPS35 with phospho-tau lesions across the studied tauopathies. Furthermore, we discovered disease-specific associations of proteins including ferritin light chain (FTL) and the neuropeptide precursor VGF within distinct pathological lesions. Notably, examination of FTL-positive microglia in CBD astrocytic plaques indicate a potential role for microglial involvement in the pathogenesis of these tau lesions. Our findings provide valuable insights into the proteomic landscape of tauopathies, shedding light on the molecular mechanisms underlying tau pathology. This first comprehensive characterization of tau-associated proteomes across different tauopathies enhances our understanding of disease heterogeneity and provides a resource for future functional investigation, as well as development of targeted therapies and diagnostic biomarkers.

4.
mBio ; 15(2): e0330423, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38206049

RESUMO

Biofilms are matrix-encased microbial communities that increase the environmental fitness and infectivity of many human pathogens including Vibrio cholerae. Biofilm matrix assembly is essential for biofilm formation and function. Known components of the V. cholerae biofilm matrix are the polysaccharide Vibrio polysaccharide (VPS), matrix proteins RbmA, RbmC, Bap1, and extracellular DNA, but the majority of the protein composition is uncharacterized. This study comprehensively analyzed the biofilm matrix proteome and revealed the presence of outer membrane proteins (OMPs). Outer membrane vesicles (OMVs) were also present in the V. cholerae biofilm matrix and were associated with OMPs and many biofilm matrix proteins suggesting that they participate in biofilm matrix assembly. Consistent with this, OMVs had the capability to alter biofilm structural properties depending on their composition. OmpU was the most prevalent OMP in the matrix, and its absence altered biofilm architecture by increasing VPS production. Single-cell force spectroscopy revealed that proteins critical for biofilm formation, OmpU, the matrix proteins RbmA, RbmC, Bap1, and VPS contribute to cell-surface adhesion forces at differing efficiency, with VPS showing the highest efficiency whereas Bap1 showing the lowest efficiency. Our findings provide new insights into the molecular mechanisms underlying biofilm matrix assembly in V. cholerae, which may provide new opportunities to develop inhibitors that specifically alter biofilm matrix properties and, thus, affect either the environmental survival or pathogenesis of V. cholerae.IMPORTANCECholera remains a major public health concern. Vibrio cholerae, the causative agent of cholera, forms biofilms, which are critical for its transmission, infectivity, and environmental persistence. While we know that the V. cholerae biofilm matrix contains exopolysaccharide, matrix proteins, and extracellular DNA, we do not have a comprehensive understanding of the majority of biofilm matrix components. Here, we discover outer membrane vesicles (OMVs) within the biofilm matrix of V. cholerae. Proteomic analysis of the matrix and matrix-associated OMVs showed that OMVs carry key matrix proteins and Vibrio polysaccharide (VPS) to help build biofilms. We also characterize the role of the highly abundant outer membrane protein OmpU in biofilm formation and show that it impacts biofilm architecture in a VPS-dependent manner. Understanding V. cholerae biofilm formation is important for developing a better prevention and treatment strategy framework.


Assuntos
Vibrio cholerae , Humanos , Vibrio cholerae/metabolismo , Proteínas de Membrana/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Proteômica , Proteínas de Bactérias/metabolismo , Biofilmes , Polissacarídeos/metabolismo , DNA/metabolismo
5.
Biol Reprod ; 110(2): 310-328, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37883444

RESUMO

The fetal brain of the mouse is thought to be dependent upon the placenta as a source of serotonin (5-hydroxytryptamine; 5-HT) and other factors. How factors reach the developing brain remains uncertain but are postulated here to be part of the cargo carried by placental extracellular vesicles (EV). We have analyzed the protein, catecholamine, and small RNA content of EV from mouse trophoblast stem cells (TSC) and TSC differentiated into parietal trophoblast giant cells (pTGC), potential primary purveyors of 5-HT. Current studies examined how exposure of mouse neural progenitor cells (NPC) to EV from either TSC or pTGC affect their transcriptome profiles. The EV from trophoblast cells contained relatively high amounts of 5-HT, as well as dopamine and norepinephrine, but there were no significant differences between EV derived from pTGC and from TSC. Content of miRNA and small nucleolar (sno)RNA, however, did differ according to EV source, and snoRNA were upregulated in EV from pTGC. The primary inferred targets of the microRNA (miRNA) from both pTGC and TSC were mRNA enriched in the fetal brain. NPC readily internalized EV, leading to changes in their transcriptome profiles. Transcripts regulated were mainly ones enriched in neural tissues. The transcripts in EV-treated NPC that demonstrated a likely complementarity with miRNA in EV were mainly up- rather than downregulated, with functions linked to neuronal processes. Our results are consistent with placenta-derived EV providing direct support for fetal brain development and being an integral part of the placenta-brain axis.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Gravidez , Feminino , Animais , Camundongos , Serotonina/metabolismo , Placenta/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Encéfalo/metabolismo , Trofoblastos/metabolismo , Células-Tronco/metabolismo
6.
Toxicol Sci ; 197(1): 16-26, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37788135

RESUMO

Cornified envelopes (CEs) of human epidermis ordinarily consist of transglutaminase-mediated cross-linked proteins and are essential for skin barrier function. However, in addition to enzyme-mediated isopeptide bonding, protein cross-linking could also arise from oxidative damage. Our group recently demonstrated abnormal incorporation of cellular proteins into CEs by pro-oxidants in woodsmoke. In this study, we focused on 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), mesquite liquid smoke (MLS), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), to further understand the mechanisms through which environmental pro-oxidants induce CE formation and alter the CE proteome. CEs induced by the ionophore X537A were used for comparison. Similar to X537A, DMNQ- and MLS-induced CE formation was associated with membrane permeabilization. However, since DMNQ is non-adduct forming, its CEs were similar in protein profile to those from X537A. By contrast, MLS, rich in reactive carbonyls that can form protein adducts, caused a dramatic change in the CE proteome. TCDD-CEs were found to contain many CE precursors, such as small proline-rich proteins and late cornified envelope proteins, encoded by the epidermal differentiation complex. Since expression of these proteins is mediated by the aryl hydrocarbon receptor (AhR), and its well-known downstream protein, CYP1A1, was exclusively present in the TCDD group, we suggest that TCDD alters the CE proteome through persistent AhR activation. This study demonstrates the potential of environmental pro-oxidants to alter the epidermal CE proteome and indicates that the cellular redox state has an important role in CE formation.


Assuntos
Dibenzodioxinas Policloradas , Proteoma , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteoma/metabolismo , Lasalocida/metabolismo , Queratinócitos/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo
7.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894945

RESUMO

Prometryn is a methylthio-s-triazine herbicide used to control the growth of annual broadleaf and grass weeds in many cultivated plants. Significant traces of prometryn are documented in the environment, mainly in waters, soil, and plants used for human and domestic consumption. Previous studies have shown that triazine herbicides have carcinogenic potential in humans. However, there is limited information about the effects of prometryn on the cardiac system in the literature, or the mechanisms and signaling pathways underlying any potential cytotoxic effects are not known. It is important to understand the possible effects of exogenous compounds such as prometryn on the heart. To determine the mechanisms and signaling pathways affected by prometryn (185 mg/kg every 48 h for seven days), we performed proteomic profiling of male mice heart with quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) using ten-plex tandem mass tag (TMT) labeling. The data suggest that several major pathways, including energy metabolism, protein degradation, fatty acid metabolism, calcium signaling, and antioxidant defense system were altered in the hearts of prometryn-treated mice. Proteasome and immunoproteasome activity assays and expression levels showed proteasome dysfunction in the hearts of prometryn-treated mice. The results suggest that prometryn induced changes in mitochondrial function and various signaling pathways within the heart, particularly affecting stress-related responses.


Assuntos
Herbicidas , Prometrina , Humanos , Animais , Camundongos , Prometrina/análise , Prometrina/metabolismo , Prometrina/farmacologia , Complexo de Endopeptidases do Proteassoma , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Herbicidas/toxicidade , Plantas/metabolismo , Mitocôndrias/metabolismo
8.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686279

RESUMO

Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative disorder associated with the FMR1 premutation. Currently, it is not possible to determine when and if individual premutation carriers will develop FXTAS. Thus, with the aim to identify biomarkers for early diagnosis, development, and progression of FXTAS, along with associated dysregulated pathways, we performed blood proteomic profiling of premutation carriers (PM) who, as part of an ongoing longitudinal study, emerged into two distinct groups: those who developed symptoms of FXTAS (converters, CON) over time (at subsequent visits) and those who did not (non-converters, NCON). We compared these groups to age-matched healthy controls (HC). We assessed CGG repeat allele size by Southern blot and PCR analysis. The proteomic profile was obtained by liquid chromatography mass spectrometry (LC-MS/MS). We identified several significantly differentiated proteins between HC and the PM groups at Visit 1 (V1), Visit 2 (V2), and between the visits. We further reported the dysregulated protein pathways, including sphingolipid and amino acid metabolism. Our findings are in agreement with previous studies showing that pathways involved in mitochondrial bioenergetics, as observed in other neurodegenerative disorders, are significantly altered and appear to contribute to the development of FXTAS. Lastly, we compared the blood proteome of the PM who developed FXTAS over time with the CSF proteome of the FXTAS patients recently reported and found eight significantly differentially expressed proteins in common. To our knowledge, this is the first report of longitudinal proteomic profiling and the identification of unique biomarkers and dysregulated protein pathways in FXTAS.


Assuntos
Proteoma , Proteômica , Humanos , Cromatografia Líquida , Estudos Longitudinais , Espectrometria de Massas em Tandem , Tremor , Biomarcadores , Proteína do X Frágil da Deficiência Intelectual/genética
9.
PLoS One ; 18(9): e0290778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37669266

RESUMO

Neonates have different cellular composition in their bronchoalveolar lavage fluid (BALF) when compared to foals and adult horses; however, little is known about the non-cellular components of BALF. The objective of this study was to determine the proteomic composition of BALF in neonatal horses and to compare it to that of foals and adult horses. Bronchoalveolar lavage fluid samples of seven neonates (< 1 week age), four 5 to 7-week-old foals, and six adult horses were collected. Quantitative proteomics of the fluid was performed using tandem mass tag labeling followed by high resolution liquid chromatography tandem mass spectrometry and protein relative abundances were compared between groups using exact text. A total of 704 proteins were identified with gene ontology terms and were classified. Of these, 332 proteins were related to the immune system in neonates, foals, and adult horses. The most frequent molecular functions identified were binding and catalytic activity and the most common biological processes were cellular process, metabolic process, and biological regulation. There was a significant difference in the proteome of neonates when compared to foals and to adult horses. Neonates had less relative expression (FDR < 0.01) of many immune-related proteins, including immunoglobulins, proteins involved in the complement cascade, ferritin, BPI fold-containing family B member 1, and macrophage receptor MARCO. This is the first report of equine neonate BALF proteomics and reveals differential abundance of proteins when compared to BALF from adult horses. The lower relative abundance of immune-related proteins in neonates could contribute to their susceptibility to pulmonary infections.


Assuntos
Líquidos Corporais , Proteômica , Cavalos , Animais , Irrigação Terapêutica , Líquido da Lavagem Broncoalveolar , Cromatografia Líquida
10.
J Biomol Tech ; 34(2)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37435391

RESUMO

Despite the advantages of fewer missing values by collecting fragment ion data on all analytes in the sample as well as the potential for deeper coverage, the adoption of data-independent acquisition (DIA) in proteomics core facility settings has been slow. The Association of Biomolecular Resource Facilities conducted a large interlaboratory study to evaluate DIA performance in proteomics laboratories with various instrumentation. Participants were supplied with generic methods and a uniform set of test samples. The resulting 49 DIA datasets act as benchmarks and have utility in education and tool development. The sample set consisted of a tryptic HeLa digest spiked with high or low levels of 4 exogenous proteins. Data are available in MassIVE MSV000086479. Additionally, we demonstrate how the data can be analyzed by focusing on 2 datasets using different library approaches and show the utility of select summary statistics. These data can be used by DIA newcomers, software developers, or DIA experts evaluating performance with different platforms, acquisition settings, and skill levels.


Assuntos
Benchmarking , Proteômica , Humanos , Medicamentos Genéricos , Escolaridade , Biblioteca Gênica
11.
PLoS One ; 18(3): e0283619, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37000833

RESUMO

Protein profiling offers an effective approach to characterizing how far epidermis departs from normal in disease states. The present pilot investigation tested the hypothesis that protein expression in epidermal corneocytes is perturbed in the forehead of subjects exhibiting frontal fibrosing alopecia. To this end, samples were collected by tape stripping from subjects diagnosed with this condition and compared to those from asymptomatic control subjects and from those exhibiting androgenetic alopecia. Unlike the latter, which exhibited only 3 proteins significantly different from controls in expression level, forehead samples from frontal fibrosing alopecia subjects displayed 72 proteins significantly different from controls, nearly two-thirds having lower expression. The results demonstrate frontal fibrosing alopecia exhibits altered corneocyte protein expression in epidermis beyond the scalp, indicative of a systemic condition. They also provide a basis for quantitative measures of departure from normal by assaying forehead epidermis, useful in monitoring response to treatment while avoiding invasive biopsy.


Assuntos
Testa , Líquen Plano , Humanos , Testa/patologia , Alopecia/patologia , Pele/patologia , Epiderme/patologia , Couro Cabeludo/patologia , Fibrose , Líquen Plano/patologia
12.
ACS Omega ; 7(20): 17462-17471, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35600141

RESUMO

Mass spectrometry (MS) based diagnostic detection of 2019 novel coronavirus infectious disease (COVID-19) has been postulated to be a useful alternative to classical PCR based diagnostics. These MS based approaches have the potential to be both rapid and sensitive and can be done on-site without requiring a dedicated laboratory or depending on constrained supply chains (i.e., reagents and consumables). Matrix-assisted laser desorption ionization (MALDI)-time-of-flight (TOF) MS has a long and established history of microorganism detection and systemic disease assessment. Previously, we have shown that automated machine learning (ML) enhanced MALDI-TOF-MS screening of nasal swabs can be both sensitive and specific for COVID-19 detection. The underlying molecules responsible for this detection are generally unknown nor are they required for this automated ML platform to detect COVID-19. However, the identification of these molecules is important for understanding both the mechanism of detection and potentially the biology of the underlying infection. Here, we used nanoscale liquid chromatography tandem MS to identify endogenous peptides found in nasal swab saline transport media to identify peptides in the same the mass over charge (m/z) values observed by the MALDI-TOF-MS method. With our peptidomics workflow, we demonstrate that we can identify endogenous peptides and endogenous protease cut sites. Further, we show that SARS-CoV-2 viral peptides were not readily detected and are highly unlikely to be responsible for the accuracy of MALDI based SARS-CoV-2 diagnostics. Further analysis with more samples will be needed to validate our findings, but the methodology proves to be promising.

13.
Acta Neuropathol Commun ; 10(1): 22, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164882

RESUMO

The most common inherited cause of two genetically and clinico-pathologically overlapping neurodegenerative diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), is the presence of expanded GGGGCC intronic hexanucleotide repeats in the C9orf72 gene. Aside from haploinsufficiency and toxic RNA foci, another non-exclusive disease mechanism is the non-canonical translation of the repeat RNA into five different dipeptide repeat proteins (DPRs), which form neuronal inclusions in affected patient brains. While evidence from cellular and animal models supports a toxic gain-of-function of pathologic poly-GA, poly-GR, and poly-PR aggregates in promoting deposition of TDP-43 pathology and neurodegeneration in affected brain areas, the relative contribution of DPRs to the disease process in c9FTD/ALS patients remains unclear. Here we have used the proximity-dependent biotin identification (BioID) proximity proteomics approach to investigate the formation and collective composition of DPR aggregates using cellular models. While interactomes of arginine rich poly-GR and poly-PR aggregates overlapped and were enriched for nucleolar and ribosomal proteins, poly-GA aggregates demonstrated a distinct association with proteasomal components, molecular chaperones (HSPA1A/HSP70, HSPA8/HSC70, VCP/p97), co-chaperones (BAG3, DNAJA1A) and other factors that regulate protein folding and degradation (SQSTM1/p62, CALR, CHIP/STUB1). Experiments in cellular models of poly-GA pathology show that molecular chaperones and co-chaperones are sequestered to the periphery of dense cytoplasmic aggregates, causing depletion from their typical cellular localization. Their involvement in the pathologic process is confirmed in autopsy brain tissue, where HSPA8, BAG3, VCP, and its adapter protein UBXN6 show a close association with poly-GA aggregates in the frontal cortex, temporal cortex, and hippocampus of c9FTLD and c9ALS cases. The association of heat shock proteins and co-chaperones with poly-GA led us to investigate their potential role in reducing its aggregation. We identified HSP40 co-chaperones of the DNAJB family as potent modifiers that increased the solubility of poly-GA, highlighting a possible novel therapeutic avenue and a central role of molecular chaperones in the pathogenesis of human C9orf72-linked diseases.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Demência Frontotemporal , Agregação Patológica de Proteínas , Sequências Repetitivas de Ácido Nucleico , Dipeptídeos , Células HEK293 , Humanos , Chaperonas Moleculares , Proteômica , RNA
14.
Phytopathology ; 112(7): 1500-1512, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34941365

RESUMO

Walnut blight (WB) disease caused by Xanthomonas arboricola pv. juglandis (Xaj) threatens orchards worldwide. Nitrogen metabolism in this bacterial pathogen is dependent on arginine, a nitrogen-enriched amino acid that can either be synthesized or provided by the plant host. The arginine biosynthetic pathway uses argininosuccinate synthase (argG), associated with increased bacterial virulence. We examined the effects of bacterial arginine and nitrogen metabolism on the plant response during WB by proteomic analysis of the mutant strain Xaj argG-. Phenotypically, the mutant strain produced 42% fewer symptoms and survived in the plant tissue with 2.5-fold reduced growth compared with wild type, while showing itself to be auxotrophic for arginine in vitro. Proteomic analysis of infected tissue enabled the profiling of 676 Xaj proteins and 3,296 walnut proteins using isobaric labeling in a data-dependent acquisition approach. Comparative analysis of differentially expressed proteins revealed distinct plant responses. Xaj wild type (WT) triggered processes of catabolism and oxidative stress in the host under observed disease symptoms, while most of the host biosynthetic processes triggered by Xaj WT were inhibited during Xaj argG- infection. Overall, the Xaj proteins revealed a drastic shift in carbon and energy management induced by disruption of nitrogen metabolism while the top differentially expressed proteins included a Fis transcriptional regulator and a peptidyl-prolyl isomerase. Our results show the critical role of de novo arginine biosynthesis to sustain virulence and minimal growth during WB. This study is timely and critical as copper-based control methods are losing their effectiveness, and new sustainable methods are urgently needed in orchard environments.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Juglans , Xanthomonas , Arginina , Proteínas de Bactérias/genética , Juglans/microbiologia , Nitrogênio , Doenças das Plantas/microbiologia , Plantas/microbiologia , Proteômica , Virulência , Xanthomonas/genética
15.
Mol Cell Proteomics ; 21(1): 100180, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808356

RESUMO

Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice.


Assuntos
Doença de Alexander , Doença de Alexander/genética , Doença de Alexander/metabolismo , Doença de Alexander/patologia , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Gliose/metabolismo , Gliose/patologia , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Proteômica
16.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638715

RESUMO

Walnut blight is a significant above-ground disease of walnuts caused by Xanthomonas arboricola pv. juglandis (Xaj). The secreted form of chorismate mutase (CM), a key enzyme of the shikimate pathway regulating plant immunity, is highly conserved between plant-associated beta and gamma proteobacteria including phytopathogens belonging to the Xanthomonadaceae family. To define its role in walnut blight disease, a dysfunctional mutant of chorismate mutase was created in a copper resistant strain Xaj417 (XajCM). Infections of immature walnut Juglans regia (Jr) fruit with XajCM were hypervirulent compared with infections with the wildtype Xaj417 strain. The in vitro growth rate, size and cellular morphology were similar between the wild-type and XajCM mutant strains, however the quantification of bacterial cells by dPCR within walnut hull tissues showed a 27% increase in XajCM seven days post-infection. To define the mechanism of hypervirulence, proteome analysis was conducted to compare walnut hull tissues inoculated with the wild type to those inoculated with the XajCM mutant strain. Proteome analysis revealed 3296 Jr proteins (five decreased and ten increased with FDR ≤ 0.05) and 676 Xaj417 proteins (235 increased in XajCM with FDR ≤ 0.05). Interestingly, the most abundant protein in Xaj was a polygalacturonase, while in Jr it was a polygalacturonase inhibitor. These results suggest that this secreted chorismate mutase may be an important virulence suppressor gene that regulates Xaj417 virulence response, allowing for improved bacterial survival in the plant tissues.


Assuntos
Proteínas de Bactérias/metabolismo , Corismato Mutase/metabolismo , Juglans/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas , Xanthomonas/enzimologia , Xanthomonas/patogenicidade
17.
J Proteome Res ; 20(10): 4655-4666, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34491751

RESUMO

Protein is a major component of all biological evidence. Proteomic genotyping is the use of genetically variant peptides (GVPs) that contain single-amino-acid polymorphisms to infer the genotype of matching nonsynonymous single-nucleotide polymorphisms for the individual from whom the protein sample originated. This can be used to statistically associate an individual to evidence found at a crime scene. The utility of the inferred genotype increases as the detection of GVPs increases, which is the direct result of technology transfer to mass spectrometry platforms typically available. Digests of single (2 cm) human hair shafts from three European and two African subjects were analyzed using data-dependent acquisition on a Q-Exactive Plus Hybrid Quadrupole-Orbitrap system, data-independent acquisition and a variant of parallel reaction monitoring (PRM) on an Orbitrap Fusion Lumos Tribrid system, and multiple reaction monitoring (MRM) on an Agilent 6495 triple quadrupole system. In our hands, average GVP detection from a selected panel of 24 GVPs increased from 6.5 ± 1.1 and 3.1 ± 0.8 using data-dependent and -independent acquisition to 9.5 ± 0.7 and 11.7 ± 1.7 using PRM and MRM (p < 0.05), respectively. PRM resulted in a 1.3-fold increase in detection sensitivity, and MRM resulted in a 1.6-fold increase in detection sensitivity. This increase in biomarker detection has a functional impact on the statistical association of a protein sample and an individual. Increased biomarker sensitivity, using Markov Chain Monte Carlo modeling, produced a median-estimated random match probability of over 1 in 10 trillion from a single hair using targeted proteomics. For PRM and MRM, detected GVPs were validated by the inclusion of stable isotope-labeled peptides in each sample, which served also as a detection trigger. This research accomplishes two aims: the demonstration of utility for alternative analytical platforms in proteomic genotyping and the establishment of validation methods for the evaluation of inferred genotypes.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Genótipo , Humanos , Proteínas/genética
18.
Forensic Sci Int Genet ; 54: 102564, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34315035

RESUMO

This study examines the potential of hair shaft proteomic analysis to delineate genetic relatedness. Proteomic profiling and amino acid sequence analysis provide information for quantitative and statistically-based analysis of individualization and sample similarity. Protein expression levels are a function of cell-specific transcriptional and translational programs. These programs are greatly influenced by an individual's genetic background, and are therefore influenced by familial relatedness as well as ancestry and genetic disease. Proteomic profiles should therefore be more similar among related individuals than unrelated individuals. Likewise, profiles of genetically variant peptides that contain single amino acid polymorphisms, the result of non-synonymous SNP alleles, should behave similarly. The proteomically-inferred SNP alleles should also provide a basis for calculation of combined paternity and sibship indices. We test these hypotheses using matching proteomic and genetic datasets from a family of two adults and four siblings, one of which has a genetic condition that perturbs hair structure and properties. We demonstrate that related individuals, compared to those who are unrelated, have more similar proteomic profiles, profiles of genetically variant peptides and higher combined paternity indices and combined sibship indices. This study builds on previous analyses of hair shaft protein profiling and genetically variant peptide profiles in different real-world scenarios including different human hair shaft body locations and pigmentation status. It also validates the inclusion of proteomic information with other biomolecular substrates in forensic hair shaft analysis, including mitochondrial and nuclear DNA.


Assuntos
Polimorfismo de Nucleotídeo Único , Proteômica , Cabelo , Humanos , Espectrometria de Massas , Peptídeos/genética
19.
Elife ; 102021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34034859

RESUMO

Dysfunction of the mitochondrial electron transport chain (mETC) is a major cause of human mitochondrial diseases. To identify determinants of mETC function, we screened a genome-wide human CRISPRi library under oxidative metabolic conditions with selective inhibition of mitochondrial Complex III and identified ovarian carcinoma immunoreactive antigen (OCIA) domain-containing protein 1 (OCIAD1) as a Complex III assembly factor. We find that OCIAD1 is an inner mitochondrial membrane protein that forms a complex with supramolecular prohibitin assemblies. Our data indicate that OCIAD1 is required for maintenance of normal steady-state levels of Complex III and the proteolytic processing of the catalytic subunit cytochrome c1 (CYC1). In OCIAD1 depleted mitochondria, unprocessed CYC1 is hemylated and incorporated into Complex III. We propose that OCIAD1 acts as an adaptor within prohibitin assemblies to stabilize and/or chaperone CYC1 and to facilitate its proteolytic processing by the IMMP2L protease.


Assuntos
Sistemas CRISPR-Cas , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Antimicina A/farmacologia , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Células K562 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Proteínas de Neoplasias/genética , Fosforilação Oxidativa , Proibitinas , Proteólise , Proteínas Repressoras/genética
20.
Cell Rep Med ; 2(5): 100288, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33969321

RESUMO

Individuals with coronavirus disease 2019 (COVID-19) frequently develop neurological symptoms, but the biological underpinnings of these phenomena are unknown. Through single-cell RNA sequencing (scRNA-seq) and cytokine analyses of cerebrospinal fluid (CSF) and blood from individuals with COVID-19 with neurological symptoms, we find compartmentalized, CNS-specific T cell activation and B cell responses. All affected individuals had CSF anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies whose target epitopes diverged from serum antibodies. In an animal model, we find that intrathecal SARS-CoV-2 antibodies are present only during brain infection and not elicited by pulmonary infection. We produced CSF-derived monoclonal antibodies from an individual with COVID-19 and found that these monoclonal antibodies (mAbs) target antiviral and antineural antigens, including one mAb that reacted to spike protein and neural tissue. CSF immunoglobulin G (IgG) from 5 of 7 patients showed antineural reactivity. This immune survey reveals evidence of a compartmentalized immune response in the CNS of individuals with COVID-19 and suggests a role of autoimmunity in neurologic sequelae of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA