Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38798419

RESUMO

As the cytoskeleton sustains cell and tissue forces, it incurs physical damage that must be repaired to maintain mechanical homeostasis. The LIM-domain protein zyxin detects force-induced ruptures in actin-myosin stress fibers, coordinating downstream repair factors to restore stress fiber integrity through unclear mechanisms. Here, we reconstitute stress fiber repair with purified proteins, uncovering detailed links between zyxin's force-regulated binding interactions and cytoskeletal dynamics. In addition to binding individual tensed actin filaments (F-actin), zyxin's LIM domains form force-dependent assemblies that bridge broken filament fragments. Zyxin assemblies engage repair factors through multi-valent interactions, coordinating nucleation of new F-actin by VASP and its crosslinking into aligned bundles by ɑ-actinin. Through these combined activities, stress fiber repair initiates within the cores of micron-scale damage sites in cells, explaining how these F-actin depleted regions are rapidly restored. Thus, zyxin's force-dependent organization of actin repair machinery inherently operates at the network scale to maintain cytoskeletal integrity.

2.
Dev Cell ; 55(4): 468-482.e7, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33058779

RESUMO

Mechanical signals transmitted through the cytoplasmic actin cytoskeleton must be relayed to the nucleus to control gene expression. LIM domains are protein-protein interaction modules found in cytoskeletal proteins and transcriptional regulators. Here, we identify three LIM protein families (zyxin, paxillin, and FHL) whose members preferentially localize to the actin cytoskeleton in mechanically stimulated cells through their tandem LIM domains. A minimal actin-myosin reconstitution system reveals that representatives of all three families directly bind F-actin only in the presence of mechanical force. Point mutations at a site conserved in each LIM domain of these proteins disrupt tensed F-actin binding in vitro and cytoskeletal localization in cells, demonstrating a common, avidity-based mechanism. Finally, we find that binding to tensed F-actin in the cytoplasm excludes the cancer-associated transcriptional co-activator FHL2 from the nucleus in stiff microenvironments. This establishes direct force-activated F-actin binding as a mechanosensing mechanism by which cytoskeletal tension can govern nuclear localization.


Assuntos
Actinas/metabolismo , Proteínas com Domínio LIM/metabolismo , Mecanotransdução Celular , Citoesqueleto de Actina/metabolismo , Animais , Fenômenos Biomecânicos , Núcleo Celular/metabolismo , Sequência Conservada , Adesões Focais/metabolismo , Humanos , Camundongos , Fenilalanina/metabolismo , Ligação Proteica
3.
Cell Chem Biol ; 27(7): 850-857.e6, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32442423

RESUMO

Aberrant chromosome numbers in cancer cells may impose distinct constraints on the emergence of drug resistance-a major factor limiting the long-term efficacy of molecularly targeted therapeutics. However, for most anticancer drugs we lack analyses of drug-resistance mechanisms in cells with different karyotypes. Here, we focus on GSK923295, a mitotic kinesin CENP-E inhibitor that was evaluated in clinical trials as a cancer therapeutic. We performed unbiased selections to isolate inhibitor-resistant clones in diploid and near-haploid cancer cell lines. In diploid cells we identified single-point mutations that can suppress inhibitor binding. In contrast,transcriptome analyses revealed that the C-terminus of CENP-E was disrupted in GSK923295-resistant near-haploid cells. While chemical inhibition of CENP-E is toxic to near-haploid cells, knockout of the CENPE gene does not suppress haploid cell proliferation, suggesting that deletion of the CENP-E C-terminus can confer resistance to GSK923295. Together, these findings indicate that different chromosome copy numbers in cells can alter epistatic dependencies and lead to distinct modes of chemotype-specific resistance.


Assuntos
Antineoplásicos/farmacologia , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Diploide , Haploidia , Heterozigoto , Humanos , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Domínios Proteicos/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Sarcosina/análogos & derivados , Sarcosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA