Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Gen Appl Microbiol ; 64(3): 108-116, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-29526926

RESUMO

The scarcity of enzymes having an optimal activity in lignocellulose deconstruction is an obstacle for industrial-scale conversion of cellulosic biomass into biofuels. With the aim of mining novel lignocellulolytic enzymes, a ~9 Gb metagenome of bacteria in Vietnamese native goats' rumen was sequenced by Illumina platform. From the data, 821 ORFs encoding carbohydrate esterases (CEs) and polysaccharide lyases (PLs) serving for lignocellulose pre-treatment, 816 ORFs encoding 11 glycoside hydrolase families (GHs) of cellulases, and 2252 ORFs encoding 22 GHs of hemicellulases, were mined. The carbohydrate binding module (CBM) was also abundant with 763 ORFs, of which 480 ORFs are located with lignocellulolytic enzymes. The enzyme modularity analysis showed that CBMs are usually present in endoglucanase, endo 1,3-beta-D-glucosidase, and endoxylanase, whereas fibronectin 3-like module (FN3) mainly represents in GH3 and immunoglobulin-like domain (Ig) was located in GH9 only. Every domain located in each ORF was analyzed in detail to contribute enzymes' modularity which is valuable for modelling, to study the structure, and for recombinant production. With the aim of confirming the annotated results, a mined ORF encoding CBM63 was highly expressed in E. coli in soluble form. The purified recombinant CBM63 exhibited no cellulase activity, but enhanced a commercial cellulase activity in the destruction of a paper filter.


Assuntos
Bactérias/enzimologia , Bactérias/genética , Microbioma Gastrointestinal/genética , Glicosídeo Hidrolases/genética , Cabras/microbiologia , Metagenoma/genética , Rúmen/microbiologia , Sequência de Aminoácidos , Animais , Bactérias/classificação , Sequência de Bases , DNA Bacteriano/genética , Bases de Dados Genéticas , Genoma Bacteriano/genética , Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Metagenômica , Fases de Leitura Aberta , Vietnã
2.
Asian-Australas J Anim Sci ; 31(5): 738-747, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28920414

RESUMO

OBJECTIVE: In a previous study, analysis of Illumina sequenced metagenomic DNA data of bacteria in Vietnamese goats' rumen showed a high diversity of putative lignocellulolytic genes. In this study, taxonomy speculation of microbial community and lignocellulolytic bacteria population in the rumen was conducted to elucidate a role of bacterial structure for effective degradation of plant materials. METHODS: The metagenomic data had been subjected into Basic Local Alignment Search Tool (BLASTX) algorithm and the National Center for Biotechnology Information non-redundant sequence database. Here the BLASTX hits were further processed by the Metagenome Analyzer program to statistically analyze the abundance of taxa. RESULTS: Microbial community in the rumen is defined by dominance of Bacteroidetes compared to Firmicutes. The ratio of Firmicutes versus Bacteroidetes was 0.36:1. An abundance of Synergistetes was uniquely identified in the goat microbiome may be formed by host genotype. With regard to bacterial lignocellulose degraders, the ratio of lignocellulolytic genes affiliated with Firmicutes compared to the genes linked to Bacteroidetes was 0.11:1, in which the genes encoding putative hemicellulases, carbohydrate esterases, polysaccharide lyases originated from Bacteroidetes were 14 to 20 times higher than from Firmicutes. Firmicutes seem to possess more cellulose hydrolysis capacity showing a Firmicutes/Bacteroidetes ratio of 0.35:1. Analysis of lignocellulolytic potential degraders shows that four species belonged to Bacteroidetes phylum, while two species belonged to Firmicutes phylum harbouring at least 12 different catalytic domains for all lignocellulose pretreatment, cellulose, as well as hemicellulose saccharification. CONCLUSION: Based on these findings, we speculate that increasing the members of Bacteroidetes to keep a low ratio of Firmicutes versus Bacteroidetes in goat rumen has resulted most likely in an increased lignocellulose digestion.

3.
Appl Environ Microbiol ; 79(24): 7837-45, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24123734

RESUMO

Mycobacterial infections in fish are commonly referred to as piscine mycobacteriosis, irrespectively of the specific identity of the causal organism. They usually cause a chronic disease and sometimes may result in high mortalities and severe economic losses. Nearly 20 species of Mycobacterium have been reported to infect fish. Among them, Mycobacterium marinum, M. fortuitum, and M. chelonae are generally considered the major agents responsible for fish mycobacteriosis. As no quick and inexpensive diagnostic test exists, we tested the potential of high-resolution melting analysis (HRMA) to rapidly identify and differentiate several Mycobacterium species involved in fish infections. By analyzing both the melting temperature and melting profile of the 16S-23S rRNA internal transcribed spacer (ITS), we were able to discriminate 12 different species simultaneously. Sensitivity tests conducted on purified M. marinum and M. fortuitum DNA revealed a limit of detection of 10 genome equivalents per reaction. The primers used in this procedure did not lead to any amplification signal with 16 control non-Mycobacterium species, thereby demonstrating their specificity for the genus Mycobacterium.


Assuntos
Técnicas Bacteriológicas/métodos , Doenças dos Peixes/microbiologia , Peixes/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Infecções por Mycobacterium não Tuberculosas/veterinária , Micobactérias não Tuberculosas/isolamento & purificação , Medicina Veterinária/métodos , Animais , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Intergênico/química , DNA Intergênico/genética , Dados de Sequência Molecular , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA