Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 241(4): 1780-1793, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38058244

RESUMO

Gray leaf spot (GLS) caused by Cercospora zeina or C. zeae-maydis is a major maize disease throughout the world. Although more than 100 QTLs resistant against GLS have been identified, very few of them have been cloned. Here, we identified a major resistance QTL against GLS, qRglsSB, explaining 58.42% phenotypic variation in SB12×SA101 BC1 F1 population. By fine-mapping, it was narrowed down into a 928 kb region. By using transgenic lines, mutants and complementation lines, it was confirmed that the ZmWAK02 gene, encoding an RD wall-associated kinase, is the responsible gene in qRglsSB resistant against GLS. The introgression of the ZmWAK02 gene into hybrid lines significantly improves their grain yield in the presence of GLS pressure and does not reduce their grain yield in the absence of GLS. In summary, we cloned a gene, ZmWAK02, conferring large effect of GLS resistance and confirmed its great value in maize breeding.


Assuntos
Ascomicetos , Zea mays , Zea mays/genética , Ascomicetos/genética , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Doenças das Plantas/genética , Resistência à Doença/genética
2.
Nat Commun ; 13(1): 4392, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906218

RESUMO

Broad-spectrum resistance has great values for crop breeding. However, its mechanisms are largely unknown. Here, we report the cloning of a maize NLR gene, RppK, for resistance against southern corn rust (SCR) and its cognate Avr gene, AvrRppK, from Puccinia polysora (the causal pathogen of SCR). The AvrRppK gene has no sequence variation in all examined isolates. It has high expression level during infection and can suppress pattern-triggered immunity (PTI). Further, the introgression of RppK into maize inbred lines and hybrids enhances resistance against multiple isolates of P. polysora, thereby increasing yield in the presence of SCR. Together, we show that RppK is involved in resistance against multiple P. polysora isolates and it can recognize AvrRppK, which is broadly distributed and conserved in P. polysora isolates.


Assuntos
Basidiomycota , Zea mays , Basidiomycota/genética , Mapeamento Cromossômico , Clonagem Molecular , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Puccinia , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA