Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Image Process ; 33: 3399-3412, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38787665

RESUMO

Existing multi-view graph learning methods often rely on consistent information for similar nodes within and across views, however they may lack adaptability when facing diversity challenges from noise, varied views, and complex data distributions. These challenges can be mainly categorized into: 1) View-specific diversity within intra-view from noise and incomplete information; 2) Cross-view diversity within inter-view caused by various latent semantics; 3) Cross-group diversity within inter-group due to data distribution differences. To this end, we propose a universal multi-view consensus graph learning framework that considers both original and generative graphs to balance consistency and diversity. Specifically, the proposed framework can be divided into the following four modules: i) Multi-channel graph module to extract principal node information, ensuring view-specific and cross-view consistency while mitigating view-specific and cross-view diversity within original graphs; ii) Generative module to produce cleaner and more realistic graphs, enriching graph structure while maintaining view-specific consistency and suppressing view-specific diversity; iii) Contrastive module to collaborate on generative semantics to facilitate cross-view consistency and reducing cross-view diversity within generative graphs; iv) Consensus graph module to consolidate learning a consensual graph, pursuing cross-group consistency and cross-group diversity. Extensive experimental results on real-world datasets demonstrate its effectiveness and superiority.

2.
Front Chem ; 8: 632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062630

RESUMO

Single-crystalline lead halide perovskites with remarkable physical properties offer great potential in integrated optoelectronic applications but are restricted by their instability and toxicity. To address these problems, various strategies including lead-free halide double perovskites with high stabilities of heat, light, and moisture have been developed. However, it still requires an efficient method to pattern single-crystalline, double-perovskite micro-/nanostructures with strict alignment and ordered orientation for the integration of optoelectronic devices. Here, our solution-processing approach employs capillary bridges to control the dewetting dynamics and confine the crystallization in the assembly of non-toxic Cs2AgBiBr6 microwire arrays. We demonstrate the strict alignment, high crystallinity, eliminated grain boundary, and ordered orientation of these as-prepared single-crystalline, double-perovskite microwire arrays. Based on these high-quality microwire arrays, we fabricate high-performance photodetectors with a responsivity of 1,625 A W-1, on/off ratio of 104, and fast response speed of τdecay = 0.04 ms and τrise = 0.28 ms. The long-term crystallographic and spectroscopic stability of Cs2AgBiBr6 microwire arrays has also been demonstrated through the 1 month exposure to air conditioning. Our strategy provides a new perception to fabricate stable perovskite microarrays for the integration of non-toxic optoelectronic devices.

3.
ACS Appl Mater Interfaces ; 11(17): 15829-15836, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964626

RESUMO

Semiconducting conjugated polymers possess attractive optoelectronic properties and low-cost solution processability and are inherently mechanically flexible. However, the device performance is susceptible to the fabrication methods because of the relatively weak intermolecular interaction of the polymers and their inherent conformational and energetic disorder. An efficient fabrication technique for large-scale integration of high-quality polymer architectures is essential for realizing high-performance optoelectronic devices. Here, we report an efficient method for fabrication of polymer nanowire arrays with a precise position, a smooth surface, a homogeneous size, high crystallinity, and ordered molecular packing. The controllable dewetting dynamics on a template with asymmetric wettability permits the formation of discrete capillary bridges, resulting in the ordered molecular packing arising from unidirectional recession of the three-phase contact line. The high quality of nanowire architectures is evidenced by the morphological characteristics and hybrid edge-on and face-on molecular packing with high crystallinity. On the basis of these high-quality nanowire arrays, photodetectors with a responsivity of 84.7 A W-1 and detectivity of >1012 Jones are realized. Our results provide a platform for integration of high-quality polymer architectures for use in high-performance optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA