Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 244: 114818, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36223680

RESUMO

The epigenetic regulator lysine specific demethylase 1 (LSD1), a MYCN cofactor, cooperatively silences MYCN suppressor genes. Furthermore, LSD1 has been correlated with adverse effects in neuroblastic tumors by propagating an undifferentiated, malignant phenotype. We observed that high LSD1 mRNA expression in MYCN-expressing neuroblastoma (NB) correlated with poor prognosis, implicating LSD1 as an oncogenic accomplice in high-grade NB. Thus, LSD1 inhibition is a potential strategy for targeting treatment-resistant MYCN-expressing NB. Tranylcypromine-based covalent LSD1 inhibitors have demonstrated anti-tumor activity but are associated with undesirable off-target effects, such that only 2 non-covalent LSD1 inhibitors are in clinical trials. We now report 3 novel scaffolds for reversible LSD1 inhibition: 2-(arylsulfonamido)benzoic acid, N-(2-(1H-tetrazol-5-yl)phenyl)benzenesulfonamide and 2-(arylcarboxamido)benzoic acid analogues. The most active of these analogues, compound 48, exhibited potent and selective mixed reversible inhibition of LSD1 (IC50 = 0.58 µM) and significantly increased global H3K4me2 in NB cells. In addition, combination treatment with 48 and bortezomib in NB cells results in a synergistic effect.


Assuntos
Histona Desmetilases , Neuroblastoma , Humanos , Linhagem Celular Tumoral , Histona Desmetilases/antagonistas & inibidores , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Benzoatos/farmacologia , Benzoatos/uso terapêutico
2.
J Antibiot (Tokyo) ; 73(8): 504-525, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32507851

RESUMO

Marine-derived bacteria are a prolific source of a wide range of structurally diverse natural products. This review, dedicated to Professor William Fenical, begins by showcasing many seminal discoveries made at the University of California San Diego from marine-derived actinomycetes. Discussed early on is the 20-year journey of discovery and advancement of the seminal actinomycetes natural product salinosporamide A into Phase III anticancer clinical trials. There are many fascinating parallels discussed that were gleaned from the comparative literature of marine sponge, tunicate, and bacteria-derived natural products. Identifying bacterial biosynthetic machinery housed in sponge and tunicate holobionts through both culture-independent and culture-dependent approaches is another important and expanding subject that is analyzed. Work reviewed herein also evaluates the hypotheses that many marine invertebrate-derived natural products are biosynthesised by associated or symbiotic bacteria. The insights and outcomes from metagenomic sequencing and synthetic biology to expand molecule discovery continue to provide exciting outcomes and they are predicted to be the source of the next generation of novel marine natural product chemical scaffolds.


Assuntos
Organismos Aquáticos/química , Bactérias/química , Produtos Biológicos/química , Poríferos/química , Urocordados/química , Animais , Metagenômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA