Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 84: 37-52, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39332672

RESUMO

Vaccination is the most effective measure to prevent disease outbreaks in fish aquaculture, with oral vaccine administration emerging as the most practical approach. However, oral vaccines face a notable limitation due to insufficient stimulation of the complex gut-associated lymphoid tissue caused by factors such as vaccine degradation, poor absorption, and recognition by the immune cells. An innovative solution to these limitations lies in the plant-based production of recombinant vaccines. Plant cells enable the production and targeted storage of recombinant vaccines in specific cell organelles which ensure superior protection from degradation and contain natural compounds acting as adjuvants. Our study explores the potential of barley (Hordeum vulgare), a globally significant cereal crop, for producing orally administered subunit vaccines against viral infections affecting economically important fish species in the Salmonidae and Cyprinidae families. Through Agrobacterium-mediated transformation of immature barley embryos, we have generated homozygous T2 generation of transgenic barley expressing recombinant antigens of spring viremia of carp virus and infectious salmon anaemia virus. The expression of these plant-based recombinant vaccines was confirmed by immunodetection, which was supported by fluorescence observation, specifically in the seed endosperm. The antigenicity of transgenic plant material containing recombinant antigens was evaluated using an intubation model of common carp (Cyprinus carpio), revealing a substantial upregulation of the immunoglobulin transcripts in both systemic and mucosal tissues over a period of 28 days following a single dose of transgenic antigens. Collectively, these results underscore the potential of barley-based recombinant vaccines for disease prevention in fish aquaculture.

2.
Front Immunol ; 15: 1350197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576605

RESUMO

Introduction: Carp edema virus (CEV) is a fish poxvirus that primarily infects the gills of common carp. CEV causes koi sleepy disease (KSD), which is highly contagious and can result in mortality of up to 100%. Methods: In the present study, we analyzed the stress and immune responses during KSD in two strains of common carp with different resistance to CEV: susceptible koi and resistant Amur sazan. Experiments were performed at two temperatures: 12°C and 18°C. In the case of koi carp, we also analyzed the effect of supplementation of 0.6% NaCl into tank water, which prevents mortality of the CEV-infected fish (salt rescue model). Results: We found that CEV-infected koi kept at 18°C had the highest viral load, which correlated with the most severe histopathological changes in the gills. CEV infection resulted in the activation of stress response reflected by the upregulated expression of genes involved in stress response in the stress axis organs and increased levels of cortisol and glucose in the blood plasma. These changes were the most pronounced in CEV-infected koi kept at 18°C. At both temperatures, the activation of antiviral immune response was observed in koi kept under freshwater and NaCl conditions upon CEV infection. Interestingly, a clear downregulation of the expression of adaptive immune genes was observed in CEV-infected koi kept under freshwater at 18°C. Conclusion: CEV induces a stress response and modulates adaptive immune response in koi, and this is correlated with the level of viral load and disease development.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Poxviridae , Animais , Cloreto de Sódio , Edema , Imunidade
3.
J Fish Dis ; 47(6): e13934, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38421376

RESUMO

Carp oedema virus (CEV) has distinct molecularly identified genogroups of viral mutations, denoted as I, IIa, and IIb. Failure to propagate CEV in vitro limits studies towards understanding its interactions with host cells. Here, virus isolates belonging to genogroup I collected during natural outbreaks in the Czech Republic were employed for routine CEV cultivation in monolayers of carp-derived primary cells, common carp brain (CCB) cells, and epithelioma papulosum cyprinid (EPC) cells. Induction of cytopathic effects (CPEs) was observed and recorded in affected cells. Cell survival rate was evaluated under serial dilutions of the CEV inoculum. Virus cell entry was quantified and visualized by qPCR and transmission electron microscopy, respectively. Study findings indicate primary gills epithelia likely present the most suitable matrix for CEV growth in vitro. Cells of the head kidney and spleen facilitate virus entry with microscopically confirmed CPEs and the presence of cytoplasmic pleomorphic virus particles. Cells of the trunk kidney and gonads are unlikely to permit virus cell entry and CPEs development. Although CEV cultivation in cell lines was inconclusive, EPC cells were CEV permissible. Monolayers of carp-derived primary cells show promise for CEV cultivation that could enable elaborate study of mechanisms underlying cellular binding and responses.


Assuntos
Carpas , Doenças dos Peixes , Poxviridae , Animais , Carpas/virologia , Poxviridae/fisiologia , Poxviridae/genética , Doenças dos Peixes/virologia , Infecções por Poxviridae/veterinária , Infecções por Poxviridae/virologia , Cultura de Vírus/métodos , Linhagem Celular , República Tcheca , Células Cultivadas , Genótipo
4.
PeerJ ; 11: e15614, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465154

RESUMO

Carp edema virus disease (CEVD), also known as koi sleepy disease (KSD), represents a serious threat to the carp industry. The expression of immune-related genes to CEV infections could lead to the selection of crucial biomarkers of the development of the disease. The expression of a total of eleven immune-related genes encoding cytokines (IL-1ß, IL-10, IL-6a, and TNF-α2), antiviral response (Mx2), cellular receptors (CD4, CD8b1, and GzmA), immunoglobulin (IgM), and genes encoding-mucins was monitored in gills of four differently KSD-susceptible strains of carp (Amur wild carp, Amur Sasan, AS; Ropsha scaly carp, Rop; Prerov scaly carp, PS; and koi) on days 6 and 11 post-infection. Carp strains were infected through two cohabitation infection trials with CEV genogroups I or IIa. The results showed that during the infection with both CEV genogroups, KSD-susceptible koi induced an innate immune response with significant up-regulation (p < 0.05) of IL-1ß, IL-10, IL-6a, and TNF-α2 genes on both 6 and 11 days post-infection (dpi) compared to the fish sampled on day 0. Compared to koi, AS and Rop strains showed up-regulation of IL-6a and TNF-α2 but no other cytokine genes. During the infection with CEV genogroup IIa, Mx2 was significantly up-regulated in all strains and peaked on 6 dpi in AS, PS, and Rop. In koi, it remained high until 11 dpi. With genogroup I infection, Mx2 was up-expressed in koi on 6 dpi and in PS on both 6 and 11 dpi. No significant differences were noticed in selected mucin genes expression measured in gills of any carp strains exposed to both CEV genogroups. During both CEV genogroups infections, the expression levels of most of the genes for T cell response, including CD4, CD8b1, and GzmA were down-regulated in AS and koi at all time points compared to day 0 control. The expression data for the above experimental trials suggest that both CEV genogroups infections in common carp strains lead to activation of the same expression pattern regardless of the fish's susceptibility towards the virus. The expression of the same genes in AS and koi responding to CEV genogroup IIa infection in mucosal tissues such as gill, gut, and skin showed the significant up-regulation of all the cytokine genes in gill and gut tissues from koi carp at 5 dpi. Significant down-regulation of CD4 and GzmA levels were only detected in koi gill on 5 dpi but not in other tissues. AS carp displayed significant up-expression of Mx2 gene in all mucosal tissues on 5 dpi, whereas in koi, it was up-regulated in gill and gut only. In both carp strains, gill harbored a higher virus load on 5 dpi compared to the other tissues. The results showed that resistance to CEV could not be linked with the selected immune responses measured. The up-regulation of mRNA expression of most of the selected immune-related genes in koi gill and gut suggests that CEV induces a more systemic mucosal immune response not restricted to the target tissue of gills.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Poxviridae , Poxviridae , Animais , Interleucina-10 , Carpas/genética , Doenças dos Peixes/genética , Poxviridae/genética , Imunidade , Edema
5.
Viruses ; 15(5)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37243132

RESUMO

In the present study, we describe a natural outbreak of carp edema virus disease (CEVD) in koi carp, concentrating on clinical manifestation, gross and microscopic pathology, immunological parameters, viral diagnostics, and phylogenetic analysis. Examination of white blood cell parameters showed increased monocyte and decreased lymphocyte counts in CEV-affected fish compared to healthy control fish. Regarding immune system functioning, the present work shows, for the first time, enhanced phagocytic activity in CEV-affected fish. Respiratory burst of phagocytes was strongly increased in diseased fish, the increase being attributed to an increased phagocyte count rather than enhancement of their metabolic activity. The present work also newly shows histopathological changes in the pancreatic tissue of diseased koi.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Poxviridae , Poxviridae , Animais , Filogenia , Edema
6.
J Fish Biol ; 101(6): 1634-1643, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36178212

RESUMO

As a surrogate for the whole organism, primary cultures and cell lines serve as valuable tools for investigating exogenous and endogenous cytopathy. Studying cell responsiveness to diseases and contaminants is considered a less demanding and more readily accessible research approach that minimizes animal distress and provides more specific data. In the current work, the authors established primary cultures from several different organs and tissues of common carp (Cyprinus carpio L.) for subsequent use in other applications. They investigated the technical challenges in obtaining successful and durable carp-derived tissue cultures. The trials indicate that the type of tissue grown, carp strain and fish age impact equally upon culturing success, as do the cultivating conditions. Cells from gill epithelia, head and trunk kidneys, spleen, skin, gonads and ocular tissue were successfully established and maintained for further use in in-vitro testing. The primary cultures were, therefore, used to investigate and assess pathogens and pollutants emerging in carp's environment.


Assuntos
Carpas , Animais , Cultura Primária de Células , Brânquias , Gônadas , Rim/metabolismo
7.
Vet Med (Praha) ; 67(11): 579-584, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38623477

RESUMO

This study evaluated the toxicity of the pyrazino isoquinoline anthelmintic praziquantel (PZQ) to the Danio rerio zebrafish and Daphnia magna water flea. The estimated 24 h and 96 h LC50 of PZQ to the zebrafish was 39.9 mg/l and 30.4 mg/l, respectively. The highest 24 h and 96 h non-lethal concentration (LC0) was 21.7 mg/l and 21.2 mg/l, respectively. The mobility inhibition test of the juvenile Daphnia magna revealed a 48 h EC50 of 42.7 mg/l.

8.
J Fish Dis ; 44(4): 371-378, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33460151

RESUMO

The importance of world aquaculture production grows annually together with the increasing need to feed the global human population. Common carp (Cyprinus carpio) is one of the most important freshwater fish in global aquaculture. Unfortunately, carp production is affected by numerous diseases of which viral diseases are the most serious. Koi herpesvirus disease (KHVD), spring viraemia of carp (SVC), and during the last decades also koi sleepy disease (KSD) are currently the most harmful viral diseases of common carp. This review summarizes current knowledge about carp edema virus (CEV), aetiological agent causing KSD, and about the disease itself. Furthermore, the article is focused on summarizing the available information about the antiviral immune response of common carp, like production of class I interferons (IFNs), activation of cytotoxic cells, and production of antibodies by B cells focusing on anti-CEV immunity.


Assuntos
Imunidade Adaptativa , Carpas , Doenças dos Peixes/imunologia , Imunidade Inata , Infecções por Poxviridae/veterinária , Poxviridae/fisiologia , Animais , Doenças dos Peixes/virologia , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/virologia
9.
NanoImpact ; 22: 100315, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-35559972

RESUMO

Nanomaterials (NMs) taken up from the environment carry a complex ecocorona consisting of dissolved organic matter. An ecocorona is assumed to influence the interactions between NMs and endogenous biomolecules and consequently affects the formation of a biological corona (biocorona) and the biological fate of the NMs. This study shows that biomolecules in fish plasma attach immediately (within <5 min) to the surface of SWCNTs and the evolution of the biocorona is a size dependent phenomenon. Quantitative proteomics data revealed that the nanotube size also influences the plasma protein composition on the surface of SWCNTs. The presence of a pre-attached ecocorona on the surface of SWCNTs eliminated the influence of nanotube size on the formation and evolution of the biocorona. Over time, endogenous biomolecules from the plasma partially replaced the pre-attached ecocorona as measured using a fluorescently labelled ecocorona. The presence of an ecocorona offers a unique surface composition to each nanotube. This suggests that understanding the biological fate of NMs taken up from the environment by organisms to support the environmental risk assessment of NMs is a challenging task because each NM may have a unique surface composition in the body of an organism.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Animais , Proteínas Sanguíneas/metabolismo , Nanotubos de Carbono/toxicidade , Proteômica
10.
J Fish Dis ; 43(9): 971-978, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32700413

RESUMO

This work describes the first confirmed cases of carp oedema virus disease (CEVD) in Slovakia and the Czech Republic and the phylogenetic analysis of Czech and Slovak carp oedema virus (CEV) isolates. Four cases of disease outbreak in the Czech Republic are described, the oldest dating from mid-May 2013 and one case from Slovakia dating from May 2019. In all cases, virus presence was confirmed using nested PCR. PCR products were sequenced and compared with 357-bp nucleotide sequences encoding the CEV P4a protein in GenBank. In four cases of disease outbreak (three common carp breeding facilities and one koi garden pond), CEV detected belonged to genogroup I. In one case (koi garden pond), fish were confirmed as infected with CEV from genogroup II. This work complements data on CEV occurrence in European countries and contributes to a better understanding of the pathways leading to transmission of the virus throughout Europe.


Assuntos
Doenças dos Peixes/virologia , Infecções por Poxviridae/veterinária , Poxviridae/isolamento & purificação , Animais , Aquicultura , Carpas , República Tcheca/epidemiologia , Surtos de Doenças , Doenças dos Peixes/epidemiologia , Genótipo , Filogenia , Poxviridae/genética , Infecções por Poxviridae/epidemiologia , Eslováquia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA