Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37627988

RESUMO

Ultrasound-assisted extraction (UAE) is an efficient and sustainable method for extracting bioactive compounds from agro-industrial by-products. Moreover, it has been reported that ultraviolet A (UVA) radiation can induce the biosynthesis and accumulation of bioactive phenolic compounds. This study optimized the efficiency of ultrasound-assisted extraction (UAE) for recovering ultraviolet A (UVA)-induced phenolic compounds in strawberry by-products (RF-N). The impact of three factors (solid-liquid ratio, ethanol concentration, and ultrasound power) on total phenolic compound (TPC) kinetics using Peleg's model was investigated. The developed model showed a suitable fit for both RF-N and strawberry by-products treated with UVA (RF-E). The optimal UAE conditions obtained were of a 1:30 ratio, 46% ethanol, and 100% ultrasound power, resulting in an average yield of 13 g total phenolics kg-1. The bioaccessibility of phenolic compounds during in-vitro digestion was 36.5%, with agrimoniin being the predominant compound. UAE combined with UVA treatment increased the bioactivity of RF extracts, displaying significant anti-proliferative effects on HT29 and Caco-2 cancer cell lines, as well as anti-inflammatory potential and cellular antioxidant activity. The ultrasound proved to be a sustainable and effective technique for extracting phenolic compounds from RF, contributing to the valorization of strawberry agro-industrial by-products, and maximizing their nutraceutical potential.

2.
J Food Sci ; 88(6): 2523-2535, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37078506

RESUMO

In the present work, squalene (SQ) was encapsulated by a conventional emulsion method using egg white protein nanoparticles (EWPn) as a high molecular weight surfactant, followed by a freeze-drying process to obtain an SQ powder ingredient. EWPn was produced by heat treatment at 85°C, 10 min, and pH 10.5. EWPn showed higher emulsifying activity regarding native egg white protein (EWP), highlighting their potential to be used for the SQ encapsulation by an emulsification process. First, we explored the encapsulation conditions using pure corn oil as an SQ carrier. Conditions were oil fraction (0.1-0.2), protein amount (2-5 wt.%), homogenization pressure (100 and 200 bar), and maltodextrin amount (10-20 wt.%). At 0.15 oil fraction, 5 wt.%. protein concentration, 200 bar homogenization pressure, and 20% maltodextrin, the highest encapsulation efficiency (EE) was reached. Then, according to these conditions, SQ was encapsulated to obtain a freeze-dried powder ingredient for bread formulation. The total and free oil of SQ freeze-dried powder were 24.4% ± 0.6% and 2.6% ± 0.1%, respectively, resulting in an EE value of 89.5% ± 0.5%. The physical, textural, and sensory properties of functional bread were not affected by the addition of 5.0% SQ freeze-dried powder. Finally, the bread loaves showed higher SQ stability than the one formulated with unencapsulated SQ. Hence, the encapsulation system developed was suitable for obtaining functional bread based on SQ fortification.


Assuntos
Pão , Esqualeno , Pós , Proteínas , Emulsões , Liofilização
3.
Front Nutr ; 9: 1080147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570174

RESUMO

Background: The revalorization of agro-industrial by-products by applying ultraviolet A (UVA) radiation to biofortify with phenolic compounds has been studied in recent times, showing improvements in the individual and total phenolic content and their bioactivity. Therefore, the main aim of this work was to optimize the biofortification process of phenolic compounds by UVA radiation to strawberry agro-industrial by-products (RF). Moreover, the effect of UVA radiation on the potential biological activity of the phenolics accumulated in RF due to the treatment was also determined. Methods: The assays followed a factorial design with three variables at three levels: UVA dose (LOW, MEDIUM, and HIGH), storage temperature (5, 10, and 15°C), and storage time (0, 24, 48, and 72 h). At each experimental condition, phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO) enzymatic activities, total phenolic compound content (TPC), phenolics profile (TPCHPLC), and agrimoniin content (AGN) were evaluated; and the optimal UVA dose, storage time, and temperature were determined. In vitro bioaccessibility of the accumulated phenolic compound was studied on RF tissue treated with UVA at optimal process conditions. The digested extracts were tested for antiproliferative activity in colorectal cancer cells, cellular antioxidant capacity, and anti-inflammatory activity. Results: The results showed that applying UVA-HIGH (86.4 KJ/m2) treatment and storing the tissue for 46 h at 15°C increased PAL activity (260%), phenolic content (240%), and AGN (300%). The biofortification process improves the bioaccessibility of the main phenolic compound of RF by 9.8 to 25%. The digested optimum extract showed an IC50 for HT29 and Caco-2 cells of 2.73 and 5.43 µg/mL, respectively, and presented 60% cellular antioxidant capacity and 30% inhibition of NOX production. Conclusion: The RF treated with UVA is an excellent source of phenolic compounds; specifically, ellagitannins and the UVA radiation proved to be efficient in biofortify RF, significantly improving the phenolic compounds content and their bioactive properties with adequate bioaccessibility, adding value to the strawberry agro-industrial by-products.

4.
Food Res Int ; 148: 110597, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507742

RESUMO

This work is aimed to obtain nanocomplexes based on egg white protein nanoparticles (EWPn) and bioactive compounds (BC), carvacrol (CAR), thymol (THY) and trans-cinnamaldehyde (CIN), and evaluate their application as antifungal edible coatings on preservative-free breads. The nanocomplex formation was studied through stoichiometry, affinity, colloidal behavior, morphology, and encapsulation efficiency (EE, %). Rounded-shape nanocomplexes with particle sizes < 100 nm were obtained. The EE values were similar for all BC (>83%). Furthermore, the in vitro antifungal activity of the nanocomplexes was verified using the Aspergillus niger species. The nanocomplexes were applied as coatings onto the crust of preservative-free breads, which were stored for 7 days (at 25 °C). The coatings had no impact on the physicochemical properties of the bread loaves (moisture, aw, texture, and color). Finally, the coatings based on EWPn-THY and EWPn-CAR nanocomplexes showed higher antifungal efficacy, extending the bread shelf life after 7 days.


Assuntos
Filmes Comestíveis , Nanopartículas , Antifúngicos/farmacologia , Pão , Proteínas do Ovo , Conservantes de Alimentos/farmacologia
5.
J Food Sci Technol ; 58(1): 186-196, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33505063

RESUMO

Dipping fresh-cut fruits in antioxidant solutions is a useful method to avoid enzymatic browning. Yerba mate extracts have a high content of antioxidant compounds and could be a natural alternative to control browning and improve the bioactive properties of fresh-cut apples. Therefore, this study aimed to evaluate the performance of an antioxidant solution of yerba mate (1.2%), citric acid (0.9%) and ascorbic acid (1.0%) with water as control, on fresh-cut 'Granny Smith' apples during storage at 2 °C (18 days) and 10 °C (15 days) under MAP. Physicochemical characteristics, bioactive properties, sensory attributes, microbial quality as well as the gas composition within the packages were analyzed throughout storage. Samples from both treatments showed a slower quality loss at 2 °C than at 10 °C. The antioxidant solution increased the lag-phase of molds, mesophilic and psychrotrophic microorganisms stored at 2 °C. The phenolic compounds of yerba mate together with ascorbic acid, not only increased the antioxidant capacity of the fresh-cut apples but also reduced the enzymatic browning at both temperatures, increasing the storage time in 2-5 days with an acceptable appearance, when compared to control samples. The antioxidant solution containing yerba mate provided the fresh-cut apples with a higher content of healthy compounds throughout storage at both temperatures.

6.
Bioresour Bioprocess ; 8(1): 61, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38650292

RESUMO

The post-harvest processing of strawberries generates considerable amounts of by-products that consist of the inedible parts of the fruit (sepal, calyx, stem, and non-marketable portion of the fruit), which is an environmental problem for local producers and industries. This study aimed to revalue these kinds of tissues through identifying and quantifying the genotype influence on the total phenolic content, phenolic profile, and the antioxidant activity of the by-products from three strawberry cultivars: 'Festival' (FE), 'San Andreas ' (SA), and 'Camino Real' (CR). The total phenolic content was determined by the Folin-Ciocalteu method, in-vitro antioxidant activity by the DPPH* radical scavenging method and the phenolic profile by PAD-HPLC. The different genotypes showed significant differences (p < 0.05) in total phenolic content (TPC), FE being the one with the highest TPC (14.97 g of gallic acid equivalents < GAE > /Kg of by-product < R >), followed by SA and CR cultivars. The antioxidant capacity of the SA and FE tissues were similar (p > 0.05) and higher (15.1-16.3 mmol Trolox equivalents < TE > /Kg R) than CR. Eight main phenolic compounds were identified and quantified on the three cultivars. Agrimoniin was the principal polyphenol (0.38-1.56 g/Kg R), and the cultivar FE had the highest concentration. This compound showed the highest correlation coefficient with the antioxidant capacity (R2 0.87; p < 0.001). This study highlighted the impact of the multi-cultivar systems in strawberry production on the bioactive potential and the diversity of secondary metabolites obtained from strawberry agro-industrial by-products at a low cost.

7.
Foods ; 9(11)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113877

RESUMO

Sous-vide is a technique of cooking foods in vacuum bags under strictly controlled temperature, offering improved taste, texture and nutritional values along with extended shelf life as compared to the traditional cooking methods. In addition to other constituents, vegetables and seafood represent important sources of phytochemicals. Thus, by applying sous-vide technology, preservation of such foods can be prolonged with almost full retention of native quality. In this way, sous-vide processing meets customers' growing demand for the production of safer and healthier foods. Considering the industrial points of view, sous-vide technology has proven to be an adequate substitute for traditional cooking methods. Therefore, its application in various aspects of food production has been increasingly researched. Although sous-vide cooking of meats and vegetables is well explored, the challenges remain with seafoods due to the large differences in structure and quality of marine organisms. Cephalopods (e.g., squid, octopus, etc.) are of particular interest, as the changes of their muscular physical structure during processing have to be carefully considered. Based on all the above, this study summarizes the literature review on the recent sous-vide application on vegetable and seafood products in view of production of high-quality and safe foodstuffs.

8.
Food Sci Technol Int ; 24(3): 223-231, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29182010

RESUMO

Enzymatic browning affects the sensory and nutritional quality of fresh-cut apples and limits their shelf-life. Yerba mate ( Ilex paraguariensis), a plant widely consumed in South America as an infusion, could potentially be used in minimally processed fruits and vegetables as a natural additive to prevent browning, due to its high content of phenolic compounds with antioxidant capacity. The effects of the concentrations of ascorbic acid, citric acid, and yerba mate in an aqueous dipping solution on the instrumental color parameters, antioxidant capacity, and sensory quality of "Granny Smith" fresh-cut apples were modeled and the solution was optimized to obtain treated apples with maximum antioxidant capacity and minimum browning, without affecting the natural flavor of the fruits. The optimal composition obtained (1.2% yerba mate + 0.9% citric acid + 1.0% ascorbic acid) increased the antioxidant capacity of the apples by 36%. The sensory acceptability test carried out on the "Granny Smith" fresh-cut apples treated with the optimal dipping solution showed that more than 78% of the surveyed consumers liked the color, flavor, and texture of the apples.


Assuntos
Antioxidantes/análise , Fast Foods , Conservantes de Alimentos/química , Frutas/química , Ilex paraguariensis/química , Malus/química , Modelos Biológicos , Antioxidantes/química , Argentina , Ácido Ascórbico/química , Ácido Cítrico/química , Manipulação de Alimentos , Preferências Alimentares , Qualidade dos Alimentos , Armazenamento de Alimentos , Humanos , Reação de Maillard , Extratos Vegetais/química , Folhas de Planta/química , Sensação , Paladar
9.
Food Sci Technol Int ; 23(4): 371-381, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28595482

RESUMO

Edible films with whey protein concentrate (WPC) with a lipid component, sunflower oil (O) or beeswax (W), to enhance barrier to water vapor were obtained. Brea gum was used as emulsifier and also as matrix component. In order to achieve emulsion with small and homogeneous droplet size, an ultrasonicator equipment was used after obtaining a pre-emulsion using a blender. The films were made by casting. Effects of lipid fraction on droplet size, zeta potential, mechanical properties, water vapor permeability (WVP), solubility, and optical properties were determined. The droplet size of emulsions with BG decreased when decreasing the lipid content in the formulation. The zeta potential was negative for all the formulations, since the pH was close to 6 for all of them and pI of BG is close to 2.5, and pI of ß-lactoglobulin and α-lactalbumin (main proteins in WPC) are 5.2 and 4.1, respectively. Increasing W or SO content in blended films reduced the tensile strength and puncture resistance significantly. BG and WPC films without lipid presented better mechanical properties. The presence of lipids decreased the WVP, as expected, and those films having BG improved this property. BG films were slightly amber as a result of the natural color of the gum. BG has shown to be a good polysaccharide for emulsifying the lipid fraction and improving the homogeneity and mechanical properties of the films with WPC and beeswax or oil.


Assuntos
Emulsões , Gomas Vegetais/química , Ceras/química , Proteínas do Soro do Leite/química , Permeabilidade , Água
10.
Food Sci Technol Int ; 22(6): 485-95, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26769132

RESUMO

The fogging of strawberries using a environmentally friendly sanitizer mixture of peracetic acid (5%) and hydrogen peroxide (20%) was performed in a model chamber and modeled as a function of the concentration (3.4, 20.0, 60.0, 100.0 and 116.6 µL sanitizer L(-) (1) air chamber) and the treatment time (5.7, 15.0, 37.5, 60.0 and 69.3 min). The sanitizer fogging was adequate for reducing total mesophilic microbial and yeasts and moulds counts of fruits until seven days of storage at 2℃. However, sanitizer oxidant properties adversely affected the content of total anthocyanins, total phenolics, vitamin C, and antioxidant capacity to various degrees, with some deleterious changes in the fruits color, depending on the fogging conditions. A multiple numeric response optimization was developed based on 2.0 log microbiological reduction, maximum phytochemicals and antioxidant capacity retentions, with no changes in the fruits color, being the optimal fogging conditions achieved: 10.1 µL sanitizer L(-1) air chamber and 29.6 min. The fogging of strawberries at these conditions may represent a promising postharvest treatment option for extending their shelf-life without affecting their sensory quality and bioactive properties.


Assuntos
Desinfecção/métodos , Fragaria/efeitos dos fármacos , Fragaria/microbiologia , Peróxido de Hidrogênio/farmacologia , Ácido Peracético/farmacologia , Compostos Fitoquímicos/metabolismo , Pigmentos Biológicos/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Desinfetantes/farmacologia , Relação Dose-Resposta a Droga , Microbiologia de Alimentos/métodos , Conservação de Alimentos/métodos , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Oxidantes/farmacologia , Fatores de Tempo , Leveduras/efeitos dos fármacos , Leveduras/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA