Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(6): e0253084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34111210

RESUMO

Rickettsioses are neglected and emerging potentially fatal febrile diseases that are caused by obligate intracellular bacteria, rickettsiae. Rickettsia (R.) typhi and R. prowazekii constitute the typhus group (TG) of rickettsiae and are the causative agents of endemic and epidemic typhus, respectively. We recently generated a monoclonal antibody (BNI52) against R. typhi. Characterization of BNI52 revealed that it specifically recognizes TG rickettsiae but not the members of the spotted fever group (SFG) rickettsiae. We further show that BNI52 binds to protein fragments of ±30 kDa that are exposed on the bacterial surface and also present in the periplasmic space. These protein fragments apparently derive from the cytosolic GroEL protein of R. typhi and are also recognized by antibodies in the sera from patients and infected mice. Furthermore, BNI52 opsonizes the bacteria for the uptake by antigen presenting cells (APC), indicating a contribution of GroEL-specific antibodies to protective immunity. Finally, it is interesting that the GroEL protein belongs to 32 proteins that are differentially downregulated by R. typhi after passage through immunodeficient BALB/c CB17 SCID mice. This could be a hint that the rickettsia GroEL protein may have immunomodulatory properties as shown for the homologous protein from several other bacteria, too. Overall, the results of this study provide evidence that GroEL represents an immunodominant antigen of TG rickettsiae that is recognized by the humoral immune response against these pathogens and that may be interesting as a vaccine candidate. Apart from that, the BNI52 antibody represents a new tool for specific detection of TG rickettsiae in various diagnostic and experimental setups.


Assuntos
Anticorpos Monoclonais/metabolismo , Chaperonina 60/imunologia , Infecções por Rickettsia/sangue , Rickettsia typhi/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/metabolismo , Anticorpos Monoclonais/sangue , Antígenos de Bactérias/imunologia , Linhagem Celular , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Camundongos SCID , Periplasma/metabolismo , Infecções por Rickettsia/imunologia , Infecções por Rickettsia/microbiologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA