Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(34): 11958-11964, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37577980

RESUMO

Ga(III) polypyridyl catecholate complexes of type [Ga(bipy)2(O,O)](NO3) or [Ga(phen)2(O,O)](NO3) respectively were readily synthesised on reaction of Ga(NO3)3 in methanol with 1 equivalent of catecholate ligand (2,3-DHBA, 3,4-DHBA, 2,3,4-THBA or CafA) and then 2 equivalents of either bipy or phen. The complexes were characterised in full including by X-ray crystallography, which established that the catecholate ligands coordinate the Ga(III) centres in a bidentate manner via the two deprotonated hydroxy groups. All Ga(III) complexes exhibited good in vitro antibacterial activity against the Gram-negative pathogenic bacteria Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. The complexes were inactive against the Gram-positive pathogenic bacteria Staphylococcus aureus including against a methicillin-resistant Staphylococcus aureus strain (MRSA). [Ga(bipy)2(2,3-DHBA-2H)](NO3)·1.5H2O (1) was shown to be non toxic in vivo in larvae of Galleria mellonella at doses up to 2000 µg mL-1 and to offer protection at doses of 100 and 250 µg mL-1 at 48 and 96 h to larvae infected with P. aeruginosa.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Antibacterianos/química , Staphylococcus aureus , Bactérias Gram-Positivas , Escherichia coli , Bactérias Gram-Negativas , Pseudomonas aeruginosa
2.
Antibiotics (Basel) ; 12(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36830259

RESUMO

The urgent need to combat antibiotic resistance and develop novel antimicrobial therapies has triggered studies on novel metal-based formulations. N-heterocyclic carbene (NHC) complexes coordinate transition metals to generate a broad range of anticancer and/or antimicrobial agents, with ongoing efforts being made to enhance the lipophilicity and drug stability. The lead silver(I) acetate complex, 1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene (NHC*) (SBC3), has previously demonstrated promising growth and biofilm-inhibiting properties. In this work, the responses of two structurally different bacteria to SBC3 using label-free quantitative proteomics were characterised. Multidrug-resistant Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) are associated with cystic fibrosis lung colonisation and chronic wound infections, respectively. SBC3 increased the abundance of alginate biosynthesis, the secretion system and drug detoxification proteins in P. aeruginosa, whilst a variety of pathways, including anaerobic respiration, twitching motility and ABC transport, were decreased in abundance. This contrasted the affected pathways in S. aureus, where increased DNA replication/repair and cell redox homeostasis and decreased protein synthesis, lipoylation and glucose metabolism were observed. Increased abundance of cell wall/membrane proteins was indicative of the structural damage induced by SBC3 in both bacteria. These findings show the potential broad applications of SBC3 in treating Gram-positive and Gram-negative bacteria.

3.
Antibiotics (Basel) ; 11(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36009995

RESUMO

Methionine aminopeptidases (MetAPs) are attractive drug targets due to their essential role in eukaryotes as well as prokaryotic cells. In this study, biochemical assays were performed on newly synthesized Isatin-pyrazole hydrazones (PS1-14) to identify potent and selective bacterial MetAPs inhibitors. Compound PS9 inhibited prokaryotic MetAPs, i.e., MtMetAP1c, EfMetAP1a and SpMetAP1a with Ki values of 0.31, 6.93 and 0.37 µM, respectively. Interestingly, PS9 inhibited the human analogue HsMetAP1b with Ki (631.7 µM) about ten thousand-fold higher than the bacterial MetAPs. The in vitro screening against Gram-positive (Enterococcus faecalis, Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa, Klebsiella pneumonia and Escherichia coli) bacterial strains also exhibited their antibacterial potential supported by minimum bactericidal concentration (MBC), disk diffusion assay, growth curve and time-kill curve experiments. Additionally, PS6 and PS9 had synergistic effects when combined with ampicillin (AMP) and ciprofloxacin (CIP) against selective bacterial strains. PS9 showed no significant cytotoxic effect on human RBCs, HEK293 cells and Galleria mellonella larvae in vivo. PS9 inhibited the growth of multidrug-resistant environmental isolates as it showed the MIC lower than the standard drugs used against selective bacterial strains. Overall, the study suggested PS9 could be a useful candidate for the development of antibacterial alternatives.

4.
Metallomics ; 14(8)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35751649

RESUMO

The antimicrobial properties of silver have been exploited for many centuries and continue to gain interest in the fight against antimicrobial drug resistance. The broad-spectrum activity and low toxicity of silver have led to its incorporation into a wide range of novel antimicrobial agents, including N-heterocyclic carbene (NHC) complexes. The antimicrobial activity and in vivo efficacy of the NHC silver(I) acetate complex SBC3, derived from 1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene (NHC*), have previously been demonstrated, although the mode(s) of action of SBC3 remains to be fully elucidated. Label-free quantitative proteomics was applied to analyse changes in protein abundance in the pathogenic yeast Candida parapsilosis in response to SBC3 treatment. An increased abundance of proteins associated with detoxification and drug efflux were indicative of a cell stress response, whilst significant decreases in proteins required for protein and amino acid biosynthesis offer potential insight into the growth-inhibitory mechanisms of SBC3. Guided by the proteomic findings and the prolific biofilm and adherence capabilities of C. parapsilosis, our studies have shown the potential of SBC3 in reducing adherence to epithelial cells and biofilm formation and hence decrease fungal virulence.


Assuntos
Anti-Infecciosos , Candida parapsilosis , Anti-Infecciosos/química , Biofilmes , Testes de Sensibilidade Microbiana , Proteoma , Proteômica , Prata/química , Prata/farmacologia , Virulência
5.
Biomedicines ; 10(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35203432

RESUMO

Drug-resistant Pseudomonas aeruginosa is rapidly developing resulting in a serious global threat. Immunocompromised patients are specifically at risk, especially those with cystic fibrosis (CF). Novel metal complexes incorporating 1,10-phenanthroline (phen) ligands have previously demonstrated antibacterial and anti-biofilm effects against resistant P. aeruginosa from CF patients in vitro. Herein, we present the in vivo efficacy of {[Cu(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (Cu-tdda-phen), {[Mn(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (Mn-tdda-phen) and [Ag2(3,6,9-tdda)(phen)4]·EtOH (Ag-tdda-phen) (tddaH2 = 3,6,9-trioxaundecanedioic acid). Individual treatments of these metal-tdda-phen complexes and in combination with the established antibiotic gentamicin were evaluated in vivo in larvae of Galleria mellonella infected with clinical isolates and laboratory strains of P. aeruginosa. G. mellonella were able to tolerate all test complexes up to 10 µg/larva. In addition, the immune response was affected by stimulation of immune cells (hemocytes) and genes that encode for immune-related peptides, specifically transferrin and inducible metallo-proteinase inhibitor. The amalgamation of metal-tdda-phen complexes and gentamicin further intensified this response at lower concentrations, clearing a P. aeruginosa infection that were previously resistant to gentamicin alone. Therefore this work highlights the anti-pseudomonal capabilities of metal-tdda-phen complexes alone and combined with gentamicin in an in vivo model.

6.
Antibiotics (Basel) ; 10(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34943757

RESUMO

Larvae of the greater wax moth, Galleria mellonella, are a convenient in vivo model for assessing the activity and toxicity of antimicrobial agents and for studying the immune response to pathogens and provide results similar to those from mammals. G. mellonella larvae are now widely used in academia and industry and their use can assist in the identification and evaluation of novel antimicrobial agents. Galleria larvae are inexpensive to purchase and house, easy to inoculate, generate results within 24-48 h and their use is not restricted by legal or ethical considerations. This review will highlight how Galleria larvae can be used to assess the efficacy of novel antimicrobial therapies (photodynamic therapy, phage therapy, metal-based drugs, triazole-amino acid hybrids) and for determining the in vivo toxicity of compounds (e.g., food preservatives, ionic liquids) and/or solvents (polysorbate 80). In addition, the disease development processes are associated with a variety of pathogens (e.g., Staphylococcus aureus, Listeria monocytogenes, Aspergillus fumigatus, Madurella mycotomatis) in mammals are also present in Galleria larvae thus providing a simple in vivo model for characterising disease progression. The use of Galleria larvae offers many advantages and can lead to an acceleration in the development of novel antimicrobials and may be a prerequisite to mammalian testing.

7.
Metallomics ; 13(2)2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33595656

RESUMO

N-heterocyclic silver carbene compounds have been extensively studied and shown to be active agents against a host of pathogenic bacteria and fungi. By incorporating hypothesized virulence targeting substituents into NHC-silver systems via salt metathesis, an atom-efficient complexation process can be used to develop new complexes to target the passive and active systems of a microbial cell. The incorporation of fatty acids and an FtsZ inhibitor have been achieved, and creation of both the intermediate salt and subsequent silver complex has been streamlined into a continuous flow process. Biological evaluation was conducted with in vitro toxicology assays showing these novel complexes had excellent inhibition against Gram-negative strains E. coli, P. aeruginosa, and K. pneumoniae; further studies also confirmed the ability to inhibit biofilm formation in methicillin-resistant Staphylococcus aureus (MRSA) and C. Parapsilosis. In vivo testing using a murine thigh infection model showed promising inhibition of MRSA for the lead compound SBC3, which is derived from 1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene (NHC*).


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Prata/química , Prata/farmacologia , Antibacterianos/síntese química , Complexos de Coordenação/síntese química , Ácidos Graxos/síntese química , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Metano/análogos & derivados , Metano/síntese química , Metano/química , Metano/farmacologia , Modelos Moleculares
8.
J Biol Inorg Chem ; 25(8): 1153-1165, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33125529

RESUMO

Gallium-based drugs have been repurposed as antibacterial therapeutic candidates and have shown significant potential as an alternative treatment option against drug resistant pathogens. The activity of gallium (Ga3+) is a result of its chemical similarity to ferric iron (Fe3+) and substitution into iron-dependent pathways. Ga3+ is redox inactive in typical physiological environments and therefore perturbs iron metabolism vital for bacterial growth. Gallium maltolate (GaM) is a well-known water-soluble formulation of gallium, consisting of a central gallium cation coordinated to three maltolate ligands, [Ga(Maltol-1H)3]. This study implemented a label-free quantitative proteomic approach to observe the effect of GaM on the bacterial pathogen, Pseudomonas aeruginosa. The replacement of iron for gallium mimics an iron-limitation response, as shown by increased abundance of proteins associated with iron acquisition and storage. A decreased abundance of proteins associated with quorum-sensing and swarming motility was also identified. These processes are a fundamental component of bacterial virulence and dissemination and hence suggest a potential role for GaM in the treatment of P. aeruginosa infection.


Assuntos
Ferro/metabolismo , Compostos Organometálicos/farmacologia , Proteômica , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/fisiologia , Pironas/farmacologia , Percepção de Quorum/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo
9.
Pathog Dis ; 78(8)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33016311

RESUMO

The immune response of insects displays many structural and functional similarities to the innate immune response of mammals. As a result of these conserved features, insects may be used for evaluating microbial virulence or for testing the in vivo efficacy and toxicity of antimicrobial compounds and results show strong similarities to those from mammals. Galleria mellonella larvae are widely used in this capacity and have the advantage of being easy to use, inexpensive to purchase and house, and being free from the ethical and legal restrictions that relate to the use of mammals in these tests. Galleria mellonella larvae may be used to assess the in vivo toxicity and efficacy of novel antimicrobial compounds. A wide range of antibacterial and antifungal therapies have been evaluated in G. mellonella larvae and results have informed subsequent experiments in mammals. While insect larvae are a convenient and reproducible model to use, care must be taken in their use to ensure accuracy of results. The objective of this review is to provide a comprehensive account of the use of G. mellonella larvae for assessing the in vivo toxicity and efficacy of a wide range of antibacterial and antifungal agents.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Mariposas/microbiologia , Animais , Modelos Animais de Doenças , Larva/microbiologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA