Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38898206

RESUMO

Synaptic plasticity occurs via multiple mechanisms to regulate synaptic efficacy. Homeostatic and Hebbian plasticity are two such mechanisms by which neuronal synapses can be altered. Although these two processes are mechanistically distinct, they converge on downstream regulation of AMPA receptor activity to modify glutamatergic neurotransmission. However, much remains to be explored regarding how these two prominent forms of plasticity interact. Ketamine, a rapidly acting antidepressant, increases glutamatergic transmission via pharmacologically-induced homeostatic plasticity. Here, we demonstrate that Hebbian plasticity mechanisms are still intact in synapses that have undergone homeostatic scaling by ketamine after either systemic injection or perfusion onto hippocampal brain slices. We also investigated this relationship in the context of stress induced by chronic exposure to corticosterone (CORT) to better model the circumstances under which ketamine may be used as an antidepressant. We found that CORT induced an anhedonia-like behavioral phenotype in mice but did not impair long-term potentiation (LTP) induction. Furthermore, corticosterone exposure does not impact the intersection of homeostatic and Hebbian plasticity mechanisms, as synapses from CORT-exposed mice also demonstrated intact ketamine-induced plasticity and LTP in succession. These results provide a mechanistic explanation for how ketamine used for the treatment of depression does not impair the integrity of learning and memory processes encoded by mechanisms such as LTP.

2.
Hippocampus ; 32(8): 610-623, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35851733

RESUMO

Rett syndrome is a leading cause of intellectual disability in females primarily caused by loss of function mutations in the transcriptional regulator MeCP2. Loss of MeCP2 leads to a host of synaptic phenotypes that are believed to underlie Rett syndrome pathophysiology. Synaptic deficits vary by brain region upon MeCP2 loss, suggesting distinct molecular alterations leading to disparate synaptic outcomes. In this study, we examined the contribution of MeCP2's newly described role in miRNA regulation to regional molecular and synaptic impairments. Two miRNAs, miR-101a and miR-203, were identified and confirmed as upregulated in MeCP2 KO mice in the hippocampus and cortex, respectively. miR-101a overexpression in hippocampal cultures led to opposing effects at excitatory and inhibitory synapses and in spontaneous and evoked neurotransmission, revealing the potential for a single miRNA to broadly regulate synapse function in the hippocampus. These results highlight the importance of regional alterations in miRNA expression and the specific impact on synaptic function with potential implications for Rett syndrome.


Assuntos
MicroRNAs , Síndrome de Rett , Animais , Feminino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/genética
3.
Brain Behav Immun ; 91: 546-555, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166661

RESUMO

Aging is associated with an enhanced neuroinflammatory response to acute immune challenge, often termed "inflammaging." However, there are conflicting reports about whether baseline levels of inflammatory markers are elevated under ambient conditions in the aging brain, or whether such changes are observed predominantly in response to acute challenge. The present studies utilized two distinct approaches to assess inflammatory markers in young and aging Fischer 344 rats. Experiment 1 examined total tissue content of inflammatory markers from hippocampus of adult (3 month), middle-aged (12 month), and aging (18 month) male Fischer (F) 344 rats using multiplex analysis (23-plex). Though trends emerged for several cytokines, no significant differences in basal tissue content were observed across the 3 ages examined. Experiment 2 measured extracellular concentrations of inflammatory factors in the hippocampus from adult (3 month) and aging (18 month) males and females using large-molecule in vivo microdialysis. Although few significant aging-related changes were observed, robust sex differences were observed in extracellular concentrations of CCL3, CCL20, and IL-1α. Experiment 2 also evaluated the involvement of the P2X7 purinergic receptor in neuroinflammation using reverse dialysis of the selective agonist BzATP. BzATP produced an increase in IL-1α and IL-1ß release and rapidly suppressed the release of CXCL1, CCL2, CCL3, CCL20, and IL-6. Other noteworthy sex by aging trends were observed in CCL3, IL-1ß, and IL-6. Together, these findings provide important new insight into late-aging and sex differences in neuroinflammation, and their regulation by the P2X7 receptor.


Assuntos
Envelhecimento , Quimiocinas , Citocinas , Hipocampo/fisiopatologia , Receptores Purinérgicos P2X7 , Caracteres Sexuais , Animais , Feminino , Inflamação , Masculino , Microdiálise , Ratos , Ratos Endogâmicos F344 , Receptores Purinérgicos
4.
Elife ; 92020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32401197

RESUMO

Synaptic transmission is initiated via spontaneous or action-potential evoked fusion of synaptic vesicles. At excitatory synapses, glutamatergic receptors activated by spontaneous and evoked neurotransmission are segregated. Although inhibitory synapses also transmit signals spontaneously or in response to action potentials, they differ from excitatory synapses in both structure and function. Therefore, we hypothesized that inhibitory synapses may have different organizing principles. We report picrotoxin, a GABAAR antagonist, blocks neurotransmission in a use-dependent manner at rat hippocampal synapses and therefore can be used to interrogate synaptic properties. Using this tool, we uncovered partial segregation of inhibitory spontaneous and evoked neurotransmission. We found up to 40% of the evoked response is mediated through GABAARs which are only activated by evoked neurotransmission. These data indicate GABAergic spontaneous and evoked neurotransmission processes are partially non-overlapping, suggesting they may serve divergent roles in neuronal signaling.


Assuntos
Neurônios GABAérgicos/fisiologia , Hipocampo/fisiologia , Potenciais Pós-Sinápticos Inibidores , Inibição Neural , Transmissão Sináptica , Animais , Células Cultivadas , Estimulação Elétrica , Feminino , Antagonistas GABAérgicos/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Picrotoxina/farmacologia , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Transmissão Sináptica/efeitos dos fármacos
5.
Neuroscience ; 377: 40-52, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496632

RESUMO

Aging is associated with a substantial decline in the expression of social behavior as well as increased neuroinflammation. Since immune activation and subsequent increased expression of cytokines can suppress social behavior in young rodents, we examined age and sex differences in microglia within brain regions critical to social behavior regulation (PVN, BNST, and MEA) as well as in the hippocampus. Adult (3-month) and aged (18-month) male and female F344 (N = 26, n = 5-8/group) rats were perfused and Iba-1 immunopositive microglia were assessed using unbiased stereology and optical density. For stereology, microglia were classified based on the following criteria: (1) thin ramified processes, (2) thick long processes, (3) stout processes, or (4) round/ameboid shape. Among the structures examined, the highest density of microglia was evident in the BNST and MEA. Aged rats of both sexes displayed increased total number of microglia number exclusively in the MEA. Sex differences also emerged, whereby aged females (but not males) displayed greater total number of microglia in the BNST relative to their young adult counterparts. When morphological features of microglia were assessed, aged rats exhibited increased soma size in the BNST, MEA, and CA3. Together, these findings provide a comprehensive characterization of microglia number and morphology under ambient conditions in CNS sites critical for the normal expression of social processes. To the extent that microglia morphology is predictive of reactivity and subsequent cytokine release, these data suggest that the expression of social behavior in late aging may be adversely influenced by heightened inflammation.


Assuntos
Envelhecimento/patologia , Encéfalo/patologia , Microglia/patologia , Caracteres Sexuais , Envelhecimento/fisiologia , Animais , Encéfalo/fisiologia , Feminino , Masculino , Microglia/fisiologia , Ratos Endogâmicos F344 , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA