Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1041325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875079

RESUMO

The myxozoan parasite Tetracapsuloides bryosalmonae is the causative agent of proliferative kidney disease (PKD)-a disease of salmonid fishes, notably of the commercially farmed rainbow trout Oncorhynchus mykiss. Both wild and farmed salmonids are threatened by this virulent/deadly disease, a chronic immunopathology characterized by massive lymphocyte proliferation and hyperplasia, which manifests as swollen kidneys in susceptible hosts. Studying the immune response towards the parasite helps us understand the causes and consequences of PKD. While examining the B cell population during a seasonal outbreak of PKD, we unexpectedly detected the B cell marker immunoglobulin M (IgM) on red blood cells (RBCs) of infected farmed rainbow trout. Here, we studied the nature of this IgM and this IgM+ cell population. We verified the presence of surface IgM via parallel approaches: flow cytometry, microscopy, and mass spectrometry. The levels of surface IgM (allowing complete resolution of IgM- RBCs from IgM+ RBCs) and frequency of IgM+ RBCs (with up to 99% of RBCs being positive) have not been described before in healthy fishes nor those suffering from disease. To assess the influence of the disease on these cells, we profiled the transcriptomes of teleost RBCs in health and disease. Compared to RBCs originating from healthy fish, PKD fundamentally altered RBCs in their metabolism, adhesion, and innate immune response to inflammation. In summary, RBCs play a larger role in host immunity than previously appreciated. Specifically, our findings indicate that the nucleated RBCs of rainbow trout interact with host IgM and contribute to the immune response in PKD.


Assuntos
Nefropatias , Oncorhynchus mykiss , Animais , Eritrócitos , Linfócitos B , Imunoglobulina M
2.
Biology (Basel) ; 10(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546310

RESUMO

The evolutionary aspects of cystatins are greatly underexplored in early-emerging metazoans. Thus, we surveyed the gene organization, protein architecture, and phylogeny of cystatin homologues mined from 110 genomes and the transcriptomes of 58 basal metazoan species, encompassing free-living and parasite taxa of Porifera, Placozoa, Cnidaria (including Myxozoa), and Ctenophora. We found that the cystatin gene repertoire significantly differs among phyla, with stefins present in most of the investigated lineages but with type 2 cystatins missing in several basal metazoan groups. Similar to liver and intestinal flukes, myxozoan parasites possess atypical stefins with chimeric structure that combine motifs of classical stefins and type 2 cystatins. Other early metazoan taxa regardless of lifestyle have only the classical representation of cystatins and lack multi-domain ones. Our comprehensive phylogenetic analyses revealed that stefins and type 2 cystatins clustered into taxonomically defined clades with multiple independent paralogous groups, which probably arose due to gene duplications. The stefin clade split between the subclades of classical stefins and the atypical stefins of myxozoans and flukes. Atypical stefins represent key evolutionary innovations of the two parasite groups for which their origin might have been linked with ancestral gene chimerization, obligate parasitism, life cycle complexity, genome reduction, and host immunity.

3.
Animals (Basel) ; 11(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535588

RESUMO

Enterospora nucleophila is a microsporidian enteroparasite that infects mainly the intestine of gilthead sea bream (Sparus aurata), leading to an emaciative syndrome. Thus far, the only available information about this infection comes from natural outbreaks in farmed fish. The aim of the present study was to determine whether E. nucleophila could be transmitted horizontally using naturally infected fish as donors, and to establish an experimental in vivo procedure to study this host-parasite model without depending on natural infections. Naïve fish were exposed to the infection by cohabitation, effluent, or intubated either orally or anally with intestinal scrapings of donor fish in four different trials. We succeeded in detecting parasite in naïve fish in all the challenges, but the infection level and the disease signs were always milder than in donor fish. The parasite was found in peripheral blood of naïve fish at 4 weeks post-challenge (wpc) in oral and effluent routes, and up to 12 wpc in the anal transmission trial. Molecular diagnosis detected E. nucleophila in other organs besides intestine, such as gills, liver, stomach or heart, although the intensity was not as high as in the target tissue. The infection tended to disappear through time in all the challenge routes assayed, except in the anal infection route.

4.
Front Immunol ; 11: 581361, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013935

RESUMO

Passive immunization constitutes an emerging field of interest in aquaculture, particularly with the restrictions for antibiotic use. Enteromyxum leei is a myxozoan intestinal parasite that invades the paracellular space of the intestinal epithelium, producing a slow-progressing disease, leading to anorexia, cachexia and mortalities. We have previously demonstrated that gilthead sea bream (GSB, Sparus aurata) that survive E. leei infection become resistant upon re-exposure, and this resistance is directly related to the presence of high levels of specific IgM in serum. Thus, the current work was aimed to determine if passive immunization could help to prevent enteromyxosis in GSB and to study in detail the nature of these protective antibodies. Serum from a pool of resistant (SUR) or naïve (NAI) animals was intracoelomically injected 24 h prior to the E. leei-effluent challenge and at 9 days post-challenge (dpc). Effluent challenge lasted for 23 days, and then the injected groups were allocated in separate tanks with clean water. A non-lethal parasite diagnosis was performed at 56 dpc. At the final sampling (100 dpc), blood, serum and tissues were collected for histology, molecular diagnosis and the detection of circulating antibodies. In parallel, we performed an immunoglobulin repertoire analysis of the fish generating SUR and NAI sera. The results showed that, fish injected with parasite-specific antibodies (spAbs) became infected with the parasite, but showed lower disease signs and intensity of infection than the other groups, indicating a later establishment of the parasite. Repertoire analysis revealed that E. leei induced a polyclonal expansion of diverse IgM and IgT subsets that could be in part an evasion strategy of the parasite. Nonetheless, GSB was able to produce sufficient levels of parasite-spAbs to avoid re-infection of surviving animals and confer certain degree of protection upon passive transfer of antibodies. These results highlight the crucial role of spAb responses against E. leei and set the basis for the development of effective treatment or prophylactic methods for aquaculture.


Assuntos
Myxozoa/imunologia , Myxozoa/patogenicidade , Doenças Parasitárias em Animais/imunologia , Doenças Parasitárias em Animais/prevenção & controle , Dourada/imunologia , Dourada/parasitologia , Animais , Aquicultura/métodos , Proteínas de Peixes , Pesqueiros , Interações Hospedeiro-Parasita/imunologia , Imunização Passiva/veterinária , Imunoglobulina M/sangue , Imunoglobulinas/sangue , Doenças Parasitárias em Animais/patologia
5.
Vet Pathol ; 57(4): 565-576, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32527210

RESUMO

Enterospora nucleophila is a microsporidian responsible for an emaciative disease in gilthead sea bream (Sparus aurata). Its intranuclear development and the lack of in vitro and in vivo models hinder its research. This study investigated the associated lesions, its detection by quantitative polymerase chain reaction, and the cellular immune response of naturally infected fish. The intensity of infection in the intestine was correlated with stunted growth and reduced body condition. At the beginning of the outbreaks, infection prevalence was highest in intestine and stomach, and in subsequent months, the prevalence decreased in the intestine and increased in hematopoietic organs and stomach. In heavy infections, the intestine had histologic lesions of enterocyte hypercellularity and proliferation of rodlet cells. Infected enterocytes had E. nucleophila spores in the cytoplasm, and a pyknotic nucleus, karyorhexis or karyolysis. Lymphocytes were present at the base of the mucosa, and eosinophilic granule cells were located between the enterocytes. In intestinal submucosa, macrophage aggregates containing spores were surrounded by lymphocytes and granulocytes, with submucosal infiltration of granulocytes. Macrophage aggregates appeared to develop into granulomata with necrotic areas containing parasite remnants. Immunohistochemistry revealed mast cells as the main type of granulocyte involved. Abundant IgM+ and IgT+ cells were identified by in situ hybridization in the submucosa when intracytoplasmic stages were present. This study describes the lesions of E. nucleophila in gilthead sea bream, an important aquaculture species.


Assuntos
Doenças dos Peixes/microbiologia , Microsporídios/isolamento & purificação , Microsporidiose/veterinária , Dourada/microbiologia , Animais , Aquicultura , Núcleo Celular/microbiologia , Núcleo Celular/patologia , Citoplasma/microbiologia , Citoplasma/patologia , Enterócitos/microbiologia , Enterócitos/patologia , Doenças dos Peixes/patologia , Granulócitos/microbiologia , Granulócitos/patologia , Granuloma/microbiologia , Granuloma/patologia , Histocitoquímica/veterinária , Imunidade Celular , Hibridização In Situ/veterinária , Intestinos/microbiologia , Intestinos/patologia , Microsporídios/classificação , Microsporídios/ultraestrutura , Microsporidiose/patologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Dourada/crescimento & desenvolvimento
6.
J Fish Dis ; 43(4): 491-502, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32100319

RESUMO

Enteromyxum leei is a myxozoan histozoic parasite that infects the intestine of several teleost fish species. In gilthead sea bream (Sparus aurata), it provokes a chronic disease, entailing anorexia, delayed growth, reduced marketability and mortality. Direct fish-to-fish transmission, relevant in aquaculture conditions, has been demonstrated for E. leei via effluent, cohabitation, and oral and anal routes. However, the minimum time of exposure for infection has not been established, nor the possible effect on the fish immune response. Two effluent trials were performed at different temperatures (high: average of 25.6°C; and low: constant at 18°C), different times of exposure to the effluent (1, 3, 5 and 7 weeks) and different population densities. The results showed that 1 week was enough to infect 100% of fish at high temperature and 58.3% at low temperature. High temperature not only increased the prevalence of infection in posterior intestine, but also induced a higher production of specific antibodies, limiting the progression of the infection along the intestine. Longer time of exposure to the parasite and higher fish densities facilitated E. leei infection. These results show that effective diagnosis, lowering animal density and removal of infected fish are key aspects to manage this disease in aquaculture facilities.


Assuntos
Doenças dos Peixes/transmissão , Myxozoa/fisiologia , Doenças Parasitárias em Animais/transmissão , Dourada , Animais , Doenças dos Peixes/parasitologia , Doenças Parasitárias em Animais/parasitologia , Densidade Demográfica , Temperatura , Fatores de Tempo , Água
7.
Front Microbiol ; 10: 2512, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736931

RESUMO

Intestinal microbiota is key for many host functions, such as digestion, nutrient metabolism, disease resistance, and immune function. With the growth of the aquaculture industry, there has been a growing interest in the manipulation of fish gut microbiota to improve welfare and nutrition. Intestinal microbiota varies with many factors, including host species, genetics, developmental stage, diet, environment, and sex. The aim of this study was to compare the intestinal microbiota of adult gilthead sea bream (Sparus aurata) from three groups of age and sex (1-year-old males and 2- and 4-year-old females) maintained under the same conditions and fed exactly the same diet. Microbiota diversity and richness did not differ among groups. However, bacterial composition did, highlighting the presence of Photobacterium and Vibrio starting at 2 years of age (females) and a higher presence of Staphylococcus and Corynebacterium in 1-year-old males. The core microbiota was defined by 14 Operational Taxonomic Units (OTUs) and the groups that showed more OTUs in common were 2- and 4-year-old females. Discriminant analyses showed a clear separation by sex and age, with bacteria belonging to the phyla Firmicutes, Proteobacteria and Actinobacteria driving the separation. Pathway analysis performed with the inferred metagenome showed significant differences between 1-year-old males and 4-year-old females, with an increase in infection-related pathways, nitrotoluene degradation and sphingolipid metabolism, and a significant decrease in carbohydrate metabolism pathways with age. These results show, for the first time, how intestinal microbiota is modulated in adult gilthead sea bream and highlight the importance of reporting age and sex variables in these type of studies in fish.

8.
Parasit Vectors ; 12(1): 486, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619276

RESUMO

BACKGROUND: In the animal production sector, enteritis is responsible for serious economic losses, and intestinal parasitism is a major stress factor leading to malnutrition and lowered performance and animal production efficiency. The effect of enteric parasites on the gut function of teleost fish, which represent the most ancient bony vertebrates, is far from being understood. The intestinal myxozoan parasite Enteromyxum leei dwells between gut epithelial cells and causes severe enteritis in gilthead sea bream (Sparus aurata), anorexia, cachexia, growth impairment, reduced marketability and increased mortality. METHODS: This study aimed to outline the gut failure in this fish-parasite model using a multifaceted approach and to find and validate non-lethal serum markers of gut barrier dysfunction. Intestinal integrity was studied in parasitized and non-parasitized fish by immunohistochemistry with specific markers for cellular adhesion (E-cadherin) and tight junctions (Tjp1 and Cldn3) and by functional studies of permeability (oral administration of FITC-dextran) and electrophysiology (Ussing chambers). Serum samples from parasitized and non-parasitized fish were analyzed using non-targeted metabolomics and some significantly altered metabolites were selected to be validated using commercial kits. RESULTS: The immunodetection of Tjp1 and Cldn3 was significantly lower in the intestine of parasitized fish, while no strong differences were found in E-cadherin. Parasitized fish showed a significant increase in paracellular uptake measured by FITC-dextran detection in serum. Electrophysiology showed a decrease in transepithelial resistance in infected animals, which showed a diarrheic profile. Serum metabolomics revealed 3702 ions, from which the differential expression of 20 identified compounds significantly separated control from infected groups in multivariate analyses. Of these compounds, serum inosine (decreased) and creatine (increased) were identified as relevant and validated with commercial kits. CONCLUSIONS: The results demonstrate the disruption of tight junctions and the loss of gut barrier function, a metabolomic profile of absorption dysfunction and anorexia, which further outline the pathophysiological effects of E. leei.


Assuntos
Enterite/veterinária , Doenças dos Peixes/parasitologia , Metabolômica , Myxozoa/patogenicidade , Doenças Parasitárias em Animais/parasitologia , Dourada/parasitologia , Animais , Caderinas/metabolismo , Claudina-3/metabolismo , Creatina/sangue , Dextranos/metabolismo , Modelos Animais de Doenças , Eletrofisiologia , Enterite/parasitologia , Ensaio de Imunoadsorção Enzimática , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Imuno-Histoquímica , Inosina/sangue , Mucosa Intestinal/metabolismo , Intestinos/parasitologia , Intestinos/patologia , Doenças Parasitárias em Animais/patologia , Permeabilidade , Proteína da Zônula de Oclusão-1/metabolismo
9.
Fish Shellfish Immunol ; 90: 349-362, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31067499

RESUMO

The myxozoan parasite Enteromyxum leei causes chronic enteritis in gilthead sea bream (GSB, Sparus aurata) leading to intestinal dysfunction. Two trials were performed in which GSB that had survived a previous infection with E. leei (SUR), and naïve GSB (NAI), were exposed to water effluent containing parasite stages. Humoral factors (total IgM and IgT, specific anti-E. leei IgM, total serum peroxidases), histopathology and gene expression were analysed. Results showed that SUR maintained high levels of specific anti-E. leei IgM (up to 16 months), expressed high levels of immunoglobulins at the intestinal mucosa, particularly the soluble forms, and were resistant to re-infection. Their acquired-type response was complemented by other immune effectors locally and systemically, like cell cytotoxicity (high granzyme A expression), complement activity (high c3 and fucolectin expression), and serum peroxidases. In contrast to NAI, SUR displayed a post-inflammatory phenotype in the intestine and head kidney, characteristic of inflammation resolution (low il1ß, high il10 and low hsp90α expression).


Assuntos
Imunidade Adaptativa , Doenças dos Peixes/imunologia , Imunidade Inata , Myxozoa/fisiologia , Doenças Parasitárias em Animais/imunologia , Dourada/imunologia , Animais , Anticorpos/imunologia , Proteínas de Peixes/imunologia , Imunoglobulinas/imunologia , Inflamação/imunologia , Inflamação/veterinária , Mucosa/imunologia
10.
Parasit Vectors ; 11(1): 443, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30064468

RESUMO

BACKGROUD: Enteromyxum leei is a myxozoan parasite that produces a slow-progressing intestinal disease. This parasite invades the paracellular space of the intestinal epithelium and progresses from the posterior to the anterior intestine. The aim of the present study was to gain insights into fish T cell responses in the gilthead sea bream-E. leei infection model using a PCR-array with 30 signature molecules for different leukocyte responses in head kidney, spleen, anterior and posterior intestine. RESULTS: The PCR-array results suggest that E. leei induced migration of T cells from head kidney to intestines where TH1, CTL and TH17 profiles were activated and kept in balance by the upregulation of regulatory cytokines. These results were partially validated by the use of cross-reacting antibodies and BrdU immunostaining to monitor proliferation. Zap70 immunostaining supported the increased number of T cells in the anterior intestine detected by gene expression, but double staining with BrdU did not show active proliferation of this cell type at a local level, supporting the migration from lymphohaematopoietic tissues to the site of infection. Global analyses of the expression profiles revealed a clear separation between infected and exposed, but non-infected fish, more evident in the target organ. Exposed, non-infected animals showed an intermediate phenotype closer to the control fish. CONCLUSIONS: These results evidence a clear modulation of the T cell response of gilthead sea bream upon E. leei infection. The effects occurred both at local and systemic levels, but the response was stronger and more specific at the site of infection, the intestine. Altogether, this research poses a promising basis to understand the response against this important parasite and establish effective preventive or palliative measures.


Assuntos
Doenças dos Peixes/parasitologia , Regulação da Expressão Gênica/imunologia , Myxozoa/fisiologia , Doenças Parasitárias em Animais/parasitologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/imunologia , Doenças Parasitárias em Animais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA