Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(16): 7926-7936, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38535752

RESUMO

The degradation and aging of carbon felt electrodes is a main reason for the performance loss of Vanadium Redox Flow Batteries over extended operation time. In this study, the chemical mechanisms for carbon electrode degradation are investigated and distinct differences in the degradation mechanisms on positive and negative electrodes have been revealed. A combination of surface analysis techniques such as X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Electrochemical Impedance Spectroscopy (EIS) was applied for this purpose. In addition to understanding the chemical and physical alterations of the aged electrodes, a thermal method for reactivating aged electrodes was developed. The reactivation process was successfully applied on artificially aged electrodes as well as on electrodes from a real-world industrial vanadium redox flow battery system. The aforementioned analysis methods provided insight and understanding into the chemical mechanisms of the reactivation procedure. By applying the reactivation method, the lifetime of vanadium redox flow batteries can be significantly extended.

2.
ChemSusChem ; : e202301659, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517381

RESUMO

Carbon-based electrodes are used in flow batteries to provide active centers for vanadium redox reactions. However, strong controversy exists about the exact origin of these centers. This study systematically explores the influence of structural and functional groups on the vanadium redox reactions at carbon surfaces. Pyridine, phenol and butyl containing groups are attached to carbon felt electrodes. To establish a unique comparison between the model and real-world behavior, both non-activated and commercially used thermally activated felts serve as a substrate. Results reveal enhanced half-cell performance in non-activated felt with introduced hydrophilic functionalities. However, this cannot be transferred to the thermally activated felt. Beyond a decrease in electrochemical activity, a reduced long-term stability can be observed. This work indicates that thermal treatment generates active sites that surpass the effect of functional groups and are even impeded by their introduction.

3.
J Colloid Interface Sci ; 661: 574-587, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308896

RESUMO

The controlled cation substitution is an effective strategy for optimizing the density of states and enhancing the electrocatalytic activity of transition metal oxide catalysts for water splitting. However, achieving tailored mesoporosity while maintaining elemental homogeneity and phase purity remains a significant challenge, especially when aiming for complex multi-metal oxides. In this study, we utilized a one-step impregnation nanocasting method for synthesizing mesoporous Mn-, Fe-, and Ni-substituted cobalt spinel oxide (Mn0.1Fe0.1Ni0.3Co2.5O4, MFNCO) and demonstrate the benefits of low-temperature calcination within a semi-sealed container at 150-200 °C. The comprehensive discussion of calcination temperature effects on porosity, particle size, surface chemistry and catalytic performance for the alkaline oxygen evolution reaction (OER) highlights the importance of humidity, which was modulated by a pre-drying step. The catalyst calcined at 170 °C exhibited the lowest overpotential (335 mV at 10 mA cm-2), highest current density (433 mA cm-2 at 1.7 V vs. RHE, reversible hydrogen electrode) and further displayed excellent stability over 22 h (at 10 mA cm-2). Furthermore, we successfully adapted this method to utilize cheap, commercially available silica gel as a hard template, yielding comparable OER performance. Our results represent a significant progress in the cost-efficient large-scale preparation of complex multi-metal oxides for catalytic applications.

4.
J Am Chem Soc ; 145(37): 20355-20364, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37671930

RESUMO

Plastic upcycling through catalytic transformations is an attractive concept to valorize waste, but the clean and energy-efficient production of high-value products from plastics remains challenging. Here, we introduce chemoenzymatic photoreforming as a process coupling enzymatic pretreatment and solar-driven reforming of polyester plastics under mild temperatures and pH to produce clean H2 and value-added chemicals. Chemoenzymatic photoreforming demonstrates versatility in upcycling polyester films and nanoplastics to produce H2 at high yields reaching ∼103-104 µmol gsub-1 and activities at >500 µmol gcat-1 h-1. Enzyme-treated plastics were also used as electron donors for photocatalytic CO2-to-syngas conversion with a phosphonated cobalt bis(terpyridine) catalyst immobilized on TiO2 nanoparticles (TiO2|CotpyP). Finally, techno-economic analyses reveal that the chemoenzymatic photoreforming approach has the potential to drastically reduce H2 production costs to levels comparable to market prices of H2 produced from fossil fuels while maintaining low CO2-equivalent emissions.

5.
Nanoscale ; 15(5): 2114-2121, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36651536

RESUMO

A molecular cobalt phthalocyanine (CoPc) catalyst has been integrated in an ethylene-bridged periodic mesoporous organosilica (PMO) to fabricate a hybrid material, CoPc-PMO, that catalyses CO2 reduction to CO in a photocatalytic system using [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) as a photosensitizer and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) as an electron donor. CoPc-PMO displays a Co-based turnover number (TONCO) of >6000 for CO evolution with >70% CO-selectivity after 4 h irradiation with UV-filtered simulated solar light, and a quantum yield of 1.95% at 467 nm towards CO. This system demonstrates a benchmark TONCO for immobilised CoPc-based catalysts towards visible light-driven CO2 reduction.

6.
ACS Catal ; 12(21): 13360-13371, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366764

RESUMO

Ethylene is an important feedstock in the chemical industry, but currently requires production from fossil resources. The electrocatalytic oxidative decarboxylation of succinic acid offers in principle an environmentally friendly route to generate ethylene. Here, a detailed investigation of the role of different carbon electrode materials and characteristics revealed that a flat electrode surface and high ordering of the carbon material are conducive for the reaction. A range of electrochemical and spectroscopic approaches such as Koutecky-Levich analysis, rotating ring-disk electrode (RRDE) studies, and Tafel analysis as well as quantum chemical calculations, electron paramagnetic resonance (EPR), and in situ infrared (IR) spectroscopy generated further insights into the mechanism of the overall process. A distinct reaction intermediate was detected, and the decarboxylation onset potential was determined to be 2.2-2.3 V versus the reversible hydrogen electrode (RHE). Following the mechanistic studies and electrode optimization, a two-step bio-electrochemical process was established for ethylene production using succinic acid sourced from food waste. The initial step of this integrated process involves microbial hydrolysis/fermentation of food waste into aqueous solutions containing succinic acid (0.3 M; 3.75 mmol per g bakery waste). The second step is the electro-oxidation of the obtained intermediate succinic acid to ethylene using a flow setup at room temperature, with a productivity of 0.4-1 µmol ethylene cmelectrode -2 h-1. This approach provides an alternative strategy to produce ethylene from food waste under ambient conditions using renewable energy.

7.
PLoS Biol ; 19(9): e3001389, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34520450

RESUMO

Pollution from microplastics and anthropogenic fibres threatens lakes, but we know little about what factors predict its accumulation. Lakes may be especially contaminated because of long water retention times and proximity to pollution sources. Here, we surveyed anthropogenic microparticles, i.e., microplastics and anthropogenic fibres, in surface waters of 67 European lakes spanning 30° of latitude and large environmental gradients. By collating data from >2,100 published net tows, we found that microparticle concentrations in our field survey were higher than previously reported in lakes and comparable to rivers and oceans. We then related microparticle concentrations in our field survey to surrounding land use, water chemistry, and plastic emissions to sites estimated from local hydrology, population density, and waste production. Microparticle concentrations in European lakes quadrupled as both estimated mismanaged waste inputs and wastewater treatment loads increased in catchments. Concentrations decreased by 2 and 5 times over the range of surrounding forest cover and potential in-lake biodegradation, respectively. As anthropogenic debris continues to pollute the environment, our data will help contextualise future work, and our models can inform control and remediation efforts.


Assuntos
Lagos , Microplásticos , Material Particulado , Poluentes da Água/análise , Ecossistema , Europa (Continente) , Água Doce/química , Hidrologia , Plásticos , Águas Residuárias
8.
ACS Catal ; 11(15): 9159-9167, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34386271

RESUMO

The chemical inertness of polyethylene makes chemical recycling challenging and motivates the development of new catalytic innovations to mitigate polymer waste. Current chemical recycling methods yield a complex mixture of liquid products, which is challenging to utilize in subsequent processes. Here, we present an oxidative depolymerization step utilizing diluted nitric acid to convert polyethylene into organic acids (40% organic acid yield), which can be coupled to a photo- or electrocatalytic decarboxylation reaction to produce hydrocarbons (individual hydrocarbon yields of 3 and 20%, respectively) with H2 and CO2 as gaseous byproducts. The integrated tandem process allows for the direct conversion of polyethylene into gaseous hydrocarbon products with an overall hydrocarbon yield of 1.0% for the oxidative/photocatalytic route and 7.6% for the oxidative/electrolytic route. The product selectivity is tunable with photocatalysis using TiO2 or carbon nitride, yielding alkanes (ethane and propane), whereas electrocatalysis on carbon electrodes produces alkenes (ethylene and propylene). This two-step recycling process of plastics can use sunlight or renewable electricity to convert polyethylene into valuable, easily separable, gaseous platform chemicals.

9.
ChemSusChem ; 14(19): 4190-4197, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33156562

RESUMO

Solar-driven reforming uses sunlight and a photocatalyst to generate H2 fuel from waste at ambient temperature and pressure. However, it faces practical scaling challenges such as photocatalyst dispersion and recyclability, competing light absorption by the waste solution, slow reaction rates and low conversion yields. Here, the immobilisation of a noble-metal-free carbon nitride/nickel phosphide (CNx |Ni2 P) photocatalyst on textured glass is shown to overcome several of these limitations. The 1 cm2 CNx |Ni2 P panels photoreform plastic, biomass, food and mixed waste into H2 and organic molecules with rates comparable to those of photocatalyst slurries. Furthermore, the panels enable facile photocatalyst recycling and novel photoreactor configurations that prevent parasitic light absorption, thereby promoting H2 production from turbid waste solutions. Scalability is further verified by preparing 25 cm2 CNx |Ni2 P panels for use in a custom-designed flow reactor to generate up to 21 µmolH 2 m-2 h-1 under "real-world" (seawater, low sunlight) conditions. The application of inexpensive and readily scalable CNx |Ni2 P panels to photoreforming of a variety of real waste streams provides a crucial step towards the practical deployment of this technology.

10.
Chem Commun (Camb) ; 56(43): 5743-5746, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32329757

RESUMO

Metal salt hydrate (MSH) solutions allow for the complete solubilisation of biomass and we demonstrate its use as a reaction medium for the photocatalytic reforming of lignocellulose. Different types of photocatalysts such as TiO2 and carbon nitride can be employed in MSH to produce H2 and organic products under more benign conditions than the commonly required extreme pH aqueous solutions.

11.
ChemSusChem ; 11(13): 2083-2090, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29761659

RESUMO

Several ZrO2 -supported ruthenium catalysts were prepared and utilized in the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) under base-free conditions. Full conversion of HMF and almost perfect selectivity towards FDCA (97 %) were achieved after 16 h by using pure O2 as an oxidant and water as a solvent. The catalytic tests show that the size of the Ru particles is crucial for the catalytic performance and that the utilization of high-surface-area ZrO2 leads to formation of very small Ru particles. Superior activity was obtained for catalysts based on ZrO2 that had been synthesized by a surface-casting method and has high surface areas up to 256 m2 g-1 . In addition to good activity and selectivity, these catalysts show also high stability and constant activity upon recycling, confirming the suitability of Ru/ZrO2 in the base-free oxidation of HMF.

12.
Angew Chem Int Ed Engl ; 56(37): 11222-11225, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28657163

RESUMO

About 15 years ago, the Ryoo group described the synthesis of CMK-5, a material consisting of a hexagonal arrangement of carbon nanotubes. Extension of the surface casting synthesis to oxide compositions, however, was not possible so far, in spite of many attempts. Here it is demonstrated, that crystalline mesoporous hollow zirconia materials with very high surface areas up to 400 m2 g-1 , and in selected cases in the form of CMK-5-like, are indeed accessible via such a surface casting process. The key for the successful synthesis is an increased interaction between the silica hard template surface and the zirconia precursor species by using silanol group-rich mesoporous silica as a hard template. The surface areas of the obtained zirconias exceed those of conventionally hard-templated ones by a factor of two to three. The surface casting process seems to be applicable also to other oxide materials.

13.
Bioorg Med Chem ; 24(15): 3291-303, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27085673

RESUMO

The characterization of the target proteins of drug molecules has become an important goal in understanding its mode of action and origin of side effects due to off-target binding. This is especially important for covalently binding drugs usually containing electrophilic moieties, which potentially can react with nucleophilic residues found in many proteins. This review gives a comprehensive overview of the use of activity-based protein profiling (ABPP) as an efficient tool for the target identification of covalently binding drugs.


Assuntos
Descoberta de Drogas/métodos , Terapia de Alvo Molecular/métodos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Proteínas/química , Proteínas/metabolismo , Animais , Humanos , Ligação Proteica
14.
J Biotechnol ; 235: 47-53, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-26854948

RESUMO

The urgency of producing new environmentally-friendly polyesters strongly enhanced the development of bio-based poly(ethylene furanoate) (PEF) as an alternative to plastics like poly(ethylene terephthalate) (PET) for applications that include food packaging, personal and home care containers and thermoforming equipment. In this study, PEF powders of various molecular weights (6, 10 and 40kDa) were synthetized and their susceptibility to enzymatic hydrolysis was investigated for the first time. According to LC/TOF-MS analysis, cutinase 1 from Thermobifida cellulosilytica liberated both 2,5-furandicarboxylic acid and oligomers of up to DP4. The enzyme preferentially hydrolyzed PEF with higher molecular weights but was active on all tested substrates. Mild enzymatic hydrolysis of PEF has a potential both for surface functionalization and monomers recycling.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Furanos , Polietilenos , Actinobacteria/enzimologia , Proteínas de Bactérias/metabolismo , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/metabolismo , Furanos/química , Furanos/metabolismo , Hidrólise , Polietilenos/química , Polietilenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA