Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dis Aquat Organ ; 148: 1-11, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35142293

RESUMO

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) causes the disease chytridiomycosis, which is a primary driver for amphibian population declines and extinctions worldwide. For highly susceptible species, such as the green and golden bell frog Litoria aurea, large numbers of Bd-related mortalities are thought to occur during the colder season (winter), when low temperatures favour the growth of the pathogen. However, extant L. aurea populations are persisting with Bd. We measured Bd prevalence and infection levels of wild L. aurea using capture-mark-recapture and radio-tracking methods. Using this information, we sought to determine host and environmental correlates of Bd prevalence and infection load. Mean ± SE infection load was higher in frogs sampled in autumn (431.5 ± 310.4 genomic equivalents; GE) and winter (1147.5 ± 735.8 GE), compared to spring (21.8 ± 19.3 GE) and summer (0.9 ± 0.8 GE). Furthermore, prevalence of Bd infection in L. aurea was highest in winter (43.6%; 95% CI 33.1-54.7%) and lowest in summer (11.2%; 95% CI 6.8-17.9%). Both prevalence and infection load decreased with increasing temperature. Seven frogs cleared their fungal infection during the coolest months when Bd prevalence was highest; however, these clearances were not permanent, as 5 frogs became infected again. Understanding the factors that allow amphibians to clear their Bd infections when temperatures are optimal for Bd growth presents the potential for manipulating such factors and provides an important step in future research.


Assuntos
Quitridiomicetos , Micoses , Animais , Anuros , Micoses/epidemiologia , Micoses/veterinária , Prevalência , Estações do Ano
2.
Ecol Evol ; 6(22): 8062-8074, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27878078

RESUMO

Morphology mediates the relationship between an organism's body temperature and its environment. Dark organisms, for example, tend to absorb heat more quickly than lighter individuals, which could influence their responses to temperature. Therefore, temperature-related traits such as morphology may affect patterns of species abundance, richness, and community assembly across a broad range of spatial scales. In this study, we examined variation in color lightness and body size within butterfly communities across hot and cool habitats in the tropical woodland-rainforest ecosystems of northeast Queensland, Australia. Using thermal imaging, we documented the absorption of solar radiation relative to color lightness and wingspan and then built a phylogenetic tree based on available sequences to analyze the effects of habitat on these traits within a phylogenetic framework. In general, darker and larger individuals were more prevalent in cool, closed-canopy rainforests than in immediately adjacent and hotter open woodlands. In addition, darker and larger butterflies preferred to be active in the shade and during crepuscular hours, while lighter and smaller butterflies were more active in the sun and midday hours-a pattern that held after correcting for phylogeny. Our ex situ experiment supported field observations that dark and large butterflies heated up faster than light and small butterflies under standardized environmental conditions. Our results show a thermal consequence of butterfly morphology across habitats and how environmental factors at a microhabitat scale may affect the distribution of species based on these traits. Furthermore, this study highlights how butterfly species might differentially respond to warming based on ecophysiological traits and how thermal refuges might emerge at microclimatic and habitat scales.

3.
J Therm Biol ; 61: 106-114, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27712651

RESUMO

Susceptibility of species to climate change varies depending on many biological and environmental traits, such as reproductive mode and climatic exposure. For example, wider thermal tolerance breadths are associated with more climatically variable habitats and viviparity could be associated with greater vulnerability relative to oviparity. However, few examples exist detailing how such physiological and environmental traits together might shape species thermal performance. In this study we compared the thermal tolerance and performance of two sympatric skink congeners in Hong Kong that differ in habitat use and reproductive mode. The viviparous Sphenomorphus indicus lives on the forest floor while the oviparous Sphenomorphus incognitus occupies stream edges. We quantified the thermal environments in each of these habitats to compare climatic exposure and then calculated thermal safety margins, potential daily activity times within each species' thermal optimal range, and possible climate change vulnerability. Although we did not detect any differences in thermal tolerance range or thermal environments across habitats, we found cooler performance in S. indicus relative to S. incognitus. Moreover, while optimal activity time increases for both skinks under a warming scenario, we project that the thermal safety margin of S. indicus would narrow to nearly zero, thus losing its buffering capacity to potential extreme climate events in the future. This research is thus consistent with recent studies emphasizing the vulnerability of viviparous reptiles to a warming climate. The results together furthermore highlight the complexity in how environmental and physiological traits at multiple spatial scales structure climate change vulnerability of ectothermic species.


Assuntos
Aclimatação , Mudança Climática , Lagartos/fisiologia , Oviparidade , Viviparidade não Mamífera , Animais , Temperatura Corporal , Temperatura Baixa , Ecossistema , Feminino , Reprodução , Temperatura
4.
PLoS One ; 10(9): e0136072, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26352857

RESUMO

It is well established in theory that short-term environmental fluctuations could affect the long-term growth rates of wildlife populations, but this theory has rarely been tested and there remains little empirical evidence that the effect is actually important in practice. Here we develop models to quantify the effects of daily, seasonal, and yearly temperature fluctuations on the average population growth rates, and we apply them to long-term data on the endangered Black-faced Spoonbill (Platalea minor); an endothermic species whose population growth rates follow a concave relationship with temperature. We demonstrate for the first time that the current levels of temperature variability, particularly seasonal variability, are already large enough to substantially reduce long-term population growth rates. As the climate changes, our results highlight the importance of considering the ecological effects of climate variability and not just average conditions.


Assuntos
Aves/fisiologia , Espécies em Perigo de Extinção , Meio Ambiente , Dinâmica não Linear , Animais , Mudança Climática , Previsões , Hong Kong , Crescimento Demográfico , Estações do Ano , Temperatura
5.
Ecol Evol ; 4(8): 1361-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24834332

RESUMO

Prompt detection of declines in abundance or distribution of populations is critical when managing threatened species that have high population turnover. Population monitoring programs provide the tools necessary to identify and detect decreases in abundance that will threaten the persistence of key populations and should occur in an adaptive management framework which designs monitoring to maximize detection and minimize effort. We monitored a population of Litoria aurea at Sydney Olympic Park over 5 years using mark-recapture, capture encounter, noncapture encounter, auditory, tadpole trapping, and dip-net surveys. The methods differed in the cost, time, and ability to detect changes in the population. Only capture encounter surveys were able to simultaneously detect a decline in the occupancy, relative abundance, and recruitment of frogs during the surveys. The relative abundance of L. aurea during encounter surveys correlated with the population size obtained from mark-recapture surveys, and the methods were therefore useful for detecting a change in the population. Tadpole trapping and auditory surveys did not predict overall abundance and were therefore not useful in detecting declines. Monitoring regimes should determine optimal survey times to identify periods where populations have the highest detectability. Once this has been achieved, capture encounter surveys provide a cost-effective method of effectively monitoring trends in occupancy, changes in relative abundance, and detecting recruitment in populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA