Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cerebellum ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769243

RESUMO

Cerebellum is a key-structure for the modulation of motor, cognitive, social and affective functions, contributing to automatic behaviours through interactions with the cerebral cortex, basal ganglia and spinal cord. The predictive mechanisms used by the cerebellum cover not only sensorimotor functions but also reward-related tasks. Cerebellar circuits appear to encode temporal difference error and reward prediction error. From a chemical standpoint, cerebellar catecholamines modulate the rate of cerebellar-based cognitive learning, and mediate cerebellar contributions during complex behaviours. Reward processing and its associated emotions are tuned by the cerebellum which operates as a controller of adaptive homeostatic processes based on interoceptive and exteroceptive inputs. Lobules VI-VII/areas of the vermis are candidate regions for the cortico-subcortical signaling pathways associated with loss aversion and reward sensitivity, together with other nodes of the limbic circuitry. There is growing evidence that the cerebellum works as a hub of regional dysconnectivity across all mood states and that mental disorders involve the cerebellar circuitry, including mood and addiction disorders, and impaired eating behaviors where the cerebellum might be involved in longer time scales of prediction as compared to motor operations. Cerebellar patients exhibit aberrant social behaviour, showing aberrant impulsivity/compulsivity. The cerebellum is a master-piece of reward mechanisms, together with the striatum, ventral tegmental area (VTA) and prefrontal cortex (PFC). Critically, studies on reward processing reinforce our view that a fundamental role of the cerebellum is to construct internal models, perform predictions on the impact of future behaviour and compare what is predicted and what actually occurs.

2.
Eur J Neurosci ; 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37455360

RESUMO

The role of neuromodulators in the cerebellum is not well understood. In particular, the behavioural significance of the cholinergic system in the cerebellum is unknown. To investigate the importance of cerebellar cholinergic signalling in behaviour, we infused acetylcholine receptor antagonists, scopolamine and mecamylamine, bilaterally into the rat cerebellum (centred on interpositus nucleus) and observed the motor effects through a battery of behavioural tests. These tests included unrewarded behaviour during open field exploration and a horizontal ladder walking task and reward-based beam walking and pellet reaching tasks. Infusion of a mix of the antagonists did not impair motor learning in the horizontal ladder walking or the reaching task but reduced spontaneous movement during open field exploration, impaired coordination during beam walking and ladder walking, led to fewer reaches in the pellet reaching task, slowed goal-directed reaching behaviour and reduced reward pellet consumption in a free access to food task. Infusion of the muscarinic antagonist scopolamine on its own resulted in deficits in motor performance and a reduction in the number of reward pellets consumed in the free access to food task. By contrast, infusion of the nicotinic antagonist mecamylamine on its own had no significant effect on any task, except beam walking traversal time, which was reduced. Together, these data suggest that acetylcholine in the cerebellar interpositus nucleus is important for the execution and coordination of voluntary movements mainly via muscarinic receptor signalling, especially in relation to reward-related behaviour.

3.
Cerebellum ; 22(5): 1002-1019, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36121552

RESUMO

Given the importance of the cerebellum in controlling movements, it might be expected that its main role in eating would be the control of motor elements such as chewing and swallowing. Whilst such functions are clearly important, there is more to eating than these actions, and more to the cerebellum than motor control. This review will present evidence that the cerebellum contributes to homeostatic, motor, rewarding and affective aspects of food consumption.Prediction and feedback underlie many elements of eating, as food consumption is influenced by expectation. For example, circadian clocks cause hunger in anticipation of a meal, and food consumption causes feedback signals which induce satiety. Similarly, the sight and smell of food generate an expectation of what that food will taste like, and its actual taste will generate an internal reward value which will be compared to that expectation. Cerebellar learning is widely thought to involve feed-forward predictions to compare expected outcomes to sensory feedback. We therefore propose that the overarching role of the cerebellum in eating is to respond to prediction errors arising across the homeostatic, motor, cognitive, and affective domains.


Assuntos
Comportamento Alimentar , Fome , Saciação , Cerebelo , Aprendizagem , Ingestão de Alimentos
4.
Elife ; 112022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35287795

RESUMO

The pivotal role of the periaqueductal grey (PAG) in fear learning is reinforced by the identification of neurons in male rat ventrolateral PAG (vlPAG) that encode fear memory through signalling the onset and offset of an auditory-conditioned stimulus during presentation of the unreinforced conditioned tone (CS+) during retrieval. Some units only display CS+ onset or offset responses, and the two signals differ in extinction sensitivity, suggesting that they are independent of each other. In addition, understanding cerebellar contributions to survival circuits is advanced by the discovery that (i) reversible inactivation of the medial cerebellar nucleus (MCN) during fear consolidation leads in subsequent retrieval to (a) disruption of the temporal precision of vlPAG offset, but not onset responses to CS+, and (b) an increase in duration of freezing behaviour. And (ii) chemogenetic manipulation of the MCN-vlPAG projection during fear acquisition (a) reduces the occurrence of fear-related ultrasonic vocalisations, and (b) during subsequent retrieval, slows the extinction rate of fear-related freezing. These findings show that the cerebellum is part of the survival network that regulates fear memory processes at multiple timescales and in multiple ways, raising the possibility that dysfunctional interactions in the cerebellar-survival network may underlie fear-related disorders and comorbidities.


Anxiety disorders are a cluster of mental health conditions characterised by persistent and excessive amounts of fear and worry. They affect millions of people worldwide, but treatments can sometimes be ineffective and have unwanted side effects. Understanding which brain regions are involved in fear and anxiety-related behaviours, and how those areas are connected, is the first step towards designing more effective treatments. A region known as the periaqueductal grey (or PAG) sits at the centre of the brain's fear and anxiety network, regulating pain, encoding fear memories and responding to threats and stressors. It also controls survival behaviours such as the 'freeze' response, when an animal is frightened. A more recent addition to the fear and anxiety network is the cerebellum, which sits at the base of the brain. Two-way connections between this region and the PAG have been well described, but how the cerebellum might influence fear and anxiety-related behaviours remains unclear. To explore this role, Lawrenson, Paci et al. investigated whether the cerebellum modulates brain activity within the PAG and if so, how this relates to fear behaviours. Rats had electrodes implanted in their brains to record the activity of nerve cells within the PAG. A common fear-conditioning task was then used to elicit 'freeze' responses: a sound was paired with mild foot shocks until the animals learned to fear the auditory signal. In the rats, a subset of neurons within the PAG responded to the tone, consistent with those cells encoding a fear memory. But when a drug blocked the cerebellum's output during fear conditioning, the timing of the PAG response was less precise and the rats' freeze response lasted longer. Lawrenson, Paci et al. concluded that the cerebellum, through its interactions with the brain's fear and anxiety network, might be responsible for coordinating the most appropriate behavioural response to fear, and how long 'freezing' lasts. In summary, these findings show that the cerebellum is a part of the brain's survival network which regulates fear-memory processes. It raises the possibility that disruption of the cerebellum might underlie anxiety and other fear-related disorders, thereby providing a new target for future therapies.


Assuntos
Medo , Substância Cinzenta Periaquedutal , Animais , Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Condicionamento Operante/fisiologia , Medo/fisiologia , Masculino , Substância Cinzenta Periaquedutal/fisiologia , Ratos
6.
J Mol Neurosci ; 52(1): 138-47, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24458742

RESUMO

ZEB2 is a transcription factor with established roles in neurogenesis but no defined function in postnatal brain despite extensive neuronal expression in telencephalic structures. Multiple, incompletely annotated transcripts derive from the Zeb2 locus; the purpose of the present study was to structurally characterize rat brain Zeb2 transcripts with respect to 3' untranslated (UTR) sequence in order to understand Zeb2 transcript regulation including possible interactions with regulatory molecules such as neuronal miRNAs. We cloned a 5054-nucleotide Zeb2 3' UTR that is included in the most abundant Zeb2 transcript in neonatal rat brain. Unique features of the distal 3' UTR region included a number of brain-specific miRNA target sites; a highly conserved miR-9 target site at 3' UTR position 4097 was selected for functional verification in transfection experiments. Parallel analysis of Zeb2 transcript, ZEB2 protein and miR-9 levels across postnatal brain cortical development revealed a significant accumulation of ZEB2 protein levels only between postnatal days P2 and P5 that was associated with an acute loss of postnatal miR-9 expression in cortex. These studies demonstrate novel features of Zeb2 gene expression in postnatal rat brain and highlight the importance of full transcript annotation for identifying the complement of potential transcript-interacting regulators.


Assuntos
Regiões 3' não Traduzidas , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Proteínas Repressoras/genética , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Células Cultivadas , Proteínas de Homeodomínio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/metabolismo , Transcrição Gênica , Homeobox 2 de Ligação a E-box com Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA