Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 12(6)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35743838

RESUMO

Little is known on what impact shade trees have on the physiology of Coffea canephora (robusta coffee) under tropical humid conditions. To fill this gap, a field experiment was conducted in the Ecuadorian Amazon to investigate how growth, nutrition (leaf N), phenological state (BBCH-scale) and yield of 5-year-old robusta coffee shrubs are affected by the presence or absence of leguminous trees, the type (organic v conventional) and intensity of management. The experiment was a factorial 5 × 4 design with four cropping systems: intensive conventional (IC), moderate conventional (MC), intensive organic (IO) and low organic (LO), and with five shading systems in a split-plot arrangement: full sun (SUN), both Erythrina spp. and Myroxylon balsamum (TaE), M. balsamum (TIM), E. spp. (ERY) and Inga edulis (GUA). Three monthly assessments were made. Cherry yields of coffee shrubs under moderate shade (c. 25%) were similar to those under high light exposure. Coffee shrubs grown with either E. spp. or I. edulis were taller (+10%) and had higher leaf N concentrations (22%) than those grown without consistent shade. Unless receiving c. 25% of shade, coffee shrubs grown under organic cropping systems showed reduced growth (25%). No correlation was found between height, cherry yield and leaf N. Both shading and cropping systems affected leaf N concentration, also depending on phenological state and yield. Further research is needed to confirm our findings in the long-term as well as to elucidate how leguminous trees may induce physiological responses in robusta coffee under humid tropical conditions.

2.
Life (Basel) ; 11(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946556

RESUMO

Coffee agroforestry systems could reconcile agricultural and environmental objectives. While pests and diseases can reduce yield, their interactions with shade and nutrition have been rarely researched, and are particularly lacking in perennial systems. We hypothesized that intermediate shade levels could reduce coffee pests while excess shade could favor fungal diseases. We hypothesized that organic rather than mineral fertilization would better synchronize with nutrient uptake and higher nutrient inputs would be associated with reduced pest and disease damage due to higher plant vigor, yet effects would be less obvious in shaded plots as coffee growth would be light-limited. Using three-year-old trees of Coffea canephora var. Robusta (robusta coffee) in the Ecuadorian Amazon, we compared a full-sun system with four shading methods creating different shade levels: (1) Myroxylon balsamum; (2) Inga edulis; (3) Erythrina spp.; or, (4) Erythrina spp. plus Myroxylon balsamum. Conventional farming at either (1) moderate or (2) intensified input and organic farming at (3) low or (4) intensified input were compared in a split-plot design with shade as the main plot factor and farming practice as the sub-plot factor. The infestation of the following pests and disease incidences were evaluated monthly during the dry season: brown twig beetle (Xylosandrus morigerus), coffee leaf miner (Leucoptera coffeella), coffee berry borer (Hypothenemus hampei), anthracnose disease (Colletotrichum spp.), thread blight (Pellicularia koleroga), and cercospora leaf spot (Cercospora coffeicola). Coffee berry borer and brown twig beetle infestation were both reduced by 7% in intensified organic treatments compared to intensified conventional treatments. Colonization of coffee berry borer holes in coffee berries by the entomopathogenic fungus Beauveria bassiana was also assessed. Brown twig beetle infestation was significantly higher under full sun than under Inga edulis, yet no other shade effects were detected. We demonstrate for the first time how intensified input use might promote pest populations and thus ultimately lead to robusta coffee yield losses.

3.
PLoS One ; 15(8): e0236759, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32745105

RESUMO

The fall armyworm (Spodoptera frugiperda) is a moth pest native to the Western Hemisphere that has recently become a global problem, invading Africa, Asia, and Australia. The species has a broad host range, long-distance migration capability, and a propensity for the generation of pesticide resistance traits that make it a formidable invasive threat and a difficult pest to control. While fall armyworm migration has been extensively studied in North America, where annual migrations of thousands of kilometers are the norm, migration patterns in South America are less understood. As a first step to address this issue we have been genetically characterizing fall armyworm populations in Ecuador, a country in the northern portion of South America that has not been extensively surveyed for this pest. These studies confirm and extend past findings indicating similarities in the fall armyworm populations from Ecuador, Trinidad-Tobago, Peru, and Bolivia that suggest substantial migratory interactions. Specifically, we found that populations throughout Ecuador are genetically homogeneous, indicating that the Andes mountain range is not a long-term barrier to fall armyworm migration. Quantification of genetic variation in an intron sequence describe patterns of similarity between fall armyworm from different locations in South America with implications for how migration might be occurring. In addition, we unexpectedly found these observations only apply to one subset of fall armyworm (the C-strain), as the other group (R-strain) was not present in Ecuador. The results suggest differences in migration behavior between fall armyworm groups in South America that appear to be related to differences in host plant preferences.


Assuntos
Haplótipos/genética , Spodoptera/genética , Migração Animal , Animais , Equador , Complexo IV da Cadeia de Transporte de Elétrons/genética , Marcadores Genéticos , Íntrons/genética , Controle de Pragas , Filogenia , Filogeografia , América do Sul
4.
Phytopathology ; 110(2): 418-427, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31502519

RESUMO

Crop health management systems can be designed according to practices that help to reduce crop losses by restricting pathogen development and promoting host plant growth. A good understanding of pathogen and host dynamics, which are interdependent, is therefore needed. In this article, we used a holistic approach to explain the behavior of coffee leaf rust (CLR), a major coffee disease. We monitored coffee plant and CLR dynamics simultaneously in plots under different disease management and agroforestry systems. Diseased leaves were also collected to characterize inoculum stock and rust life stages (latent rust area, area with uredospores, necrosis due to rust) through picture analysis. We used structural equation modeling to obtain an overview of CLR pathosystem functioning on a plant scale. This overview integrates processes such as disease dilution by host leaf renewal, direct and indirect effects of fruit load on CLR development, antagonistic effects of shading depending on rust life stages, the tonic effect of copper-based fungicides on leaf retention, and effects on rust life stages depending on fungicide types. From our results, we also deduced that the inoculum stock could be calculated in unsprayed plots from the rust area with uredospores, with uredospores at 58 × 103 cm-2, on average.


Assuntos
Agricultura , Basidiomycota , Coffea , Modelos Biológicos , Doenças das Plantas , Basidiomycota/fisiologia , Coffea/microbiologia , Fungicidas Industriais , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia
5.
Phytopathology ; 106(6): 572-80, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26828230

RESUMO

Hemileia vastatrix caused a severe epidemic in Central America in 2012-13. The gradual development of that epidemic on nearly a continental scale suggests that dispersal at different scales played a significant role. Shade has been proposed as a way of reducing uredospore dispersal. The effect of shade (two strata: Erythrina poeppigiana below and Chloroleucon eurycyclum above) and full sun on H. vastatrix dispersal was studied with Burkard traps in relation to meteorological records. Annual and daily patterns of dispersal were observed, with peaks of uredospore capture obtained during wet seasons and in the early afternoon. A maximum of 464 uredospores in 1 day (in 14.4 m(3) of air) was recorded in October 2014. Interactions between shade/full sun and meteorological conditions were found. Rainfall, possibly intercepted by tree cover and redistributed by raindrops of higher kinetic energy, was the main driver of uredospore dispersal under shade. Wind gusts reversed this effect, probably by inhibiting water accumulation on leaves. Wind gusts also promoted dispersal under dry conditions in full sun, whereas they had no effect under shaded conditions, probably because the canopy blocked the wind. Our results indicate the importance of managing shade cover differentially in rainy versus dry periods to control the dispersal of airborne H. vastatrix uredospores.


Assuntos
Basidiomycota/fisiologia , Luz , Esporos Fúngicos/fisiologia , Coffea/microbiologia , Chuva , Fatores de Tempo , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA