Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 139(10): 104310, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-24050347

RESUMO

The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 µsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 µTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.


Assuntos
Benzaldeídos/química , Biomassa , Furaldeído/química , Temperatura Alta , Espectrometria de Massas/métodos , Espectrofotometria Infravermelho/métodos
2.
J Chem Phys ; 137(16): 164308, 2012 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-23126711

RESUMO

A heated SiC microtubular reactor has been used to decompose acetaldehyde and its isotopomers (CH(3)CDO, CD(3)CHO, and CD(3)CDO). The pyrolysis experiments are carried out by passing a dilute mixture of acetaldehyde (roughly 0.1%-1%) entrained in a stream of a buffer gas (either He or Ar) through a heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 50-200 Torr with the SiC tube wall temperature in the range 1200-1900 K. Characteristic residence times in the reactor are 50-200 µs after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 µTorr. The reactor has been modified so that both pulsed and continuous modes can be studied, and results from both flow regimes are presented. Using various detection methods (Fourier transform infrared spectroscopy and both fixed wavelength and tunable synchrotron radiation photoionization mass spectrometry), a number of products formed at early pyrolysis times (roughly 100-200 µs) are identified: H, H(2), CH(3), CO, CH(2)=CHOH, HC≡CH, H(2)O, and CH(2)=C=O; trace quantities of other species are also observed in some of the experiments. Pyrolysis of rare isotopomers of acetaldehyde produces characteristic isotopic signatures in the reaction products, which offers insight into reaction mechanisms that occur in the reactor. In particular, while the principal unimolecular processes appear to be radical decomposition CH(3)CHO (+M) → CH(3) + H + CO and isomerization of acetaldehyde to vinyl alcohol, it appears that the CH(2)CO and HCCH are formed (perhaps exclusively) by bimolecular reactions, especially those involving hydrogen atom attacks.


Assuntos
Acetaldeído/química , Temperatura Alta , Espectrometria de Massas , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Anal Chem ; 84(11): 4647-51, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22571167

RESUMO

Enhanced charging, or supercharging, of analytes in electrospray ionization mass spectrometry (ESI MS) facilitates high resolution MS by reducing an ion mass-to-charge (m/z) ratio, increasing tandem mass spectrometry (MS/MS) efficiency. ESI MS supercharging is usually achieved by adding a supercharging reagent to the electrospray solution. Addition of these supercharging reagents to the mobile phase in liquid chromatography (LC)-MS/MS increases the average charge of enzymatically derived peptides and improves peptide and protein identification in large-scale bottom-up proteomics applications but disrupts chromatographic separation. Here, we demonstrate the average charge state of selected peptides and proteins increases by introducing the supercharging reagents directly into the ESI Taylor cone (in-spray supercharging) using a dual-sprayer ESI microchip. The results are comparable to those obtained by the addition of supercharging reagents directly into the analyte solution or LC mobile phase. Therefore, supercharging reaction can be accomplished on a time-scale of ion liberation from a droplet in the ESI ion source.


Assuntos
Peptídeos/química , Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Razão Sinal-Ruído , Eletricidade Estática , Espectrometria de Massas em Tandem
4.
J Chem Phys ; 135(1): 014306, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21744901

RESUMO

We have used a heated 2 cm × 1 mm SiC microtubular (µtubular) reactor to decompose acetaldehyde: CH(3)CHO + Δ â†’ products. Thermal decomposition is followed at pressures of 75-150 Torr and at temperatures up to 1675 K, conditions that correspond to residence times of roughly 50-100 µs in the µtubular reactor. The acetaldehyde decomposition products are identified by two independent techniques: vacuum ultraviolet photoionization mass spectroscopy (PIMS) and infrared (IR) absorption spectroscopy after isolation in a cryogenic matrix. Besides CH(3)CHO, we have studied three isotopologues, CH(3)CDO, CD(3)CHO, and CD(3)CDO. We have identified the thermal decomposition products CH(3) (PIMS), CO (IR, PIMS), H (PIMS), H(2) (PIMS), CH(2)CO (IR, PIMS), CH(2)=CHOH (IR, PIMS), H(2)O (IR, PIMS), and HC≡CH (IR, PIMS). Plausible evidence has been found to support the idea that there are at least three different thermal decomposition pathways for CH(3)CHO; namely, radical decomposition: CH(3)CHO + Δ â†’ CH(3) + [HCO] → CH(3) + H + CO; elimination: CH(3)CHO + Δ â†’ H(2) + CH(2)=C=O; isomerization∕elimination: CH(3)CHO + Δ â†’ [CH(2)=CH-OH] → HC≡CH + H(2)O. An interesting result is that both PIMS and IR spectroscopy show compelling evidence for the participation of vinylidene, CH(2)=C:, as an intermediate in the decomposition of vinyl alcohol: CH(2)=CH-OH + Δ â†’ [CH(2)=C:] + H(2)O → HC≡CH + H(2)O.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA