Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 90(6): 2472-2485, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37582228

RESUMO

PURPOSE: To ultimately make accurate and precise fetal noninvasive oxygen saturation (sO2 ) measurements by T2 -prepared bSSFP more widely available by systematically assessing error sources in order to potentially reduce perinatal mortality in cardiovascular malformations and fetal growth restriction. METHODS: T2 -prepared bSSFP data were acquired in phantoms; in flowing blood in adults in the superior sagittal sinus, ascending and descending aorta, and main pulmonary artery; and in the fetal descending aorta and umbilical vein. T2 was assessed in relation to T2 two- or three-parameter curve-fitting techniques, SSFP readout, refocusing time delay (τ), constant and pulsatile blood flow, and impact of T1 recovery. Further, fetal T2 and sO2 variability were quantified in the descending aorta and umbilical vein in healthy fetuses and fetuses with cardiovascular malformation (gestational weeks 32-38). RESULTS: In phantoms, three-parameter fitting was accurate irrespective of phase FOV (<4 ms; i.e., <2%), and T2 was overestimated (up to 23 ms/10%; p = 0.001) beyond ±30 Hz off-resonance. In the adult aorta, T2 was underestimated during higher blood flow velocities and pulsatility for τ = 16 ms (-41 ms/-17%; p = 0.008). In fetuses, two-parameter fitting overestimated T2 compared with three-parameter fitting (+33 ms/+18%; p = 0.03). T2 variability was 18 ms/15% in the fetal descending aorta and 28 ms/14% in the umbilical vein. The resulting estimated sO2 variability was ∼10% (15% of sO2 value) in the fetal descending aorta. CONCLUSIONS: Errors due to T2 -fitting techniques, off-resonance, flow velocity, and insufficient T1 recovery between image acquisitions could be mitigated by using three-parameter fitting with included saturation-prepared images approximating infinite T2 -preparation time, adequate shimming covering the fetus and placenta, and by modifying acquisition parameters. Variability in fetal blood T2 and sO2 , however, indicate that it is currently not feasible to use these methods for prediction of disease.


Assuntos
Sangue Fetal , Saturação de Oxigênio , Gravidez , Feminino , Adulto , Humanos , Feto/diagnóstico por imagem , Hemodinâmica/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Oxigênio
2.
Magn Reson Med ; 89(2): 594-604, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36156292

RESUMO

PURPOSE: To explore a fetal 3D cardiovascular cine acquisition using a radial image acquisition and compressed-sensing reconstruction and compare image quality and scan time with conventional multislice 2D imaging. METHODS: Volumetric fetal cardiac data were acquired in 26 volunteers using a radial 3D balanced SSFP pulse sequence. Cardiac gating was performed using a Doppler ultrasound device. Images were reconstructed using a parallel-imaging and compressed-sensing algorithm. Multiplanar reformatting to standard cardiac views was performed before image analysis. Clinical 2D images were used for comparison. Qualitative and quantitative image evaluation were performed by two experienced observers (scale: 1-4). Volumes, mass, and function were assessed. RESULTS: Average scan time for the 3D imaging was 6 min, including one localizer. A 2D imaging stack covering the entire heart including localizer sequences took at least 6.5 min, depending on planning complexity. The 3D acquisition was successful in 7 of 26 subjects (27%). Overall image contrast and perceived resolution were lower in the 3D images. Nonetheless, the 3D images had, on average, a moderate cardiac diagnostic quality (median [range]: 3 [1-4]). Standard clinical 2D acquisitions had a high cardiac diagnostic quality (median [range]: 4 [3, 4]). Cardiac measurements were not different between 2D and 3D images (all p > 0.16). CONCLUSION: The presented free-breathing whole-heart fetal 3D radial cine MRI acquisition and reconstruction method enables retrospective visualization of all cardiac views while keeping examination times short. This proof-of-concept work produced images with diagnostic quality, while at the same time reducing the planning complexity to a single localizer.


Assuntos
Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Humanos , Imageamento Tridimensional/métodos , Interpretação de Imagem Assistida por Computador/métodos , Estudos Retrospectivos , Suspensão da Respiração , Imagem Cinética por Ressonância Magnética/métodos
3.
Sci Rep ; 12(1): 9580, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688875

RESUMO

Anodal transcranial direct current stimulation (aTDCS) of primary motor hand area (M1-HAND) can enhance corticomotor excitability, but it is still unknown which current intensity produces the strongest effect on intrinsic neural firing rates and synaptic activity. Magnetic resonance imaging (MRI) combined with pseudo-continuous Arterial Spin Labeling (pcASL MRI) can map regional cortical blood flow (rCBF). The measured rCBF signal is sensitive to regional changes in neuronal activity due to neurovascular coupling. Therefore, concurrent TDCS and pcASL MRI may reveal the relationship between current intensity and TDCS-induced changes in overall firing rates and synaptic activity in the cortical target. Here we employed pcASL MRI to map acute rCBF changes during short-duration aTDCS of left M1-HAND. Using the rCBF response as a proxy for regional neuronal activity, we investigated if short-duration aTDCS produces an instantaneous dose-dependent rCBF increase in the targeted M1-HAND that may be useful for individual dosing. Nine healthy right-handed participants received 30 s of aTDCS at 0.5, 1.0, 1.5, and 2.0 mA with the anode placed over left M1-HAND and cathode over the right supraorbital region. Concurrent pcASL MRI at 3 T probed TDCS-related rCBF changes in the targeted M1-HAND. Movement-induced rCBF changes were also assessed. Apart from a subtle increase in rCBF at 0.5 mA, short-duration aTDCS did not modulate rCBF in the M1-HAND relative to no-stimulation periods. None of the participants showed a dose-dependent increase in rCBF during aTDCS, even after accounting for individual differences in TDCS-induced electrical field strength. In contrast, finger movements led to robust activation of left M1-HAND before and after aTDCS. Short-duration bipolar aTDCS does not produce consistant instantaneous dose-dependent rCBF increases in the targeted M1-HAND at conventional intensity ranges. Therefore, the regional hemodynamic response profile to short-duration aTDCS may not be suited to inform individual dosing of TDCS intensity.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Circulação Cerebrovascular , Eletrodos , Potencial Evocado Motor/fisiologia , Humanos , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Movimento/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana
4.
J Phys Act Health ; 16(10): 894-901, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31382243

RESUMO

BACKGROUND: It is questionable whether postures that are regarded as sedentary behavior in able-bodied persons evoke comparable physiological responses in adults with stroke or cerebral palsy (CP). This study aimed to compare metabolic demand and muscle activity in healthy controls, adults with stroke, and adults with CP during sedentary behavior and light physical activities. METHODS: Seventy-one adults (45.6 [18.9] y, range 18-86) participated in this study, of which there were 18 controls, 31 with stroke, and 22 with CP. The metabolic equivalent of task (MET) and level of muscle activation were assessed for different sedentary positions (sitting supported and unsupported) and light physical activities (standing and walking). RESULTS: During sitting supported and unsupported, people with mild to moderate stroke and CP show comparable MET and electromyographic values as controls. While sitting unsupported, people with severe stroke show higher METs and electromyographic values (P < .001), and people with severe CP only show higher METs compared with controls (P < .05) but all below 1.5 METs. Standing increased electromyographic values in people with severe stroke or CP (P < .001) and reached values above 1.5 METs. CONCLUSIONS: Physiologic responses during sedentary behavior are comparable for controls and adults with mild to moderate stroke and CP, whereas higher metabolic demands and muscle activity (stroke only) were observed in severely affected individuals.


Assuntos
Paralisia Cerebral/fisiopatologia , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Postura/fisiologia , Comportamento Sedentário , Acidente Vascular Cerebral/fisiopatologia , Caminhada/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Paralisia Cerebral/complicações , Pessoas com Deficiência , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Postura Sentada , Posição Ortostática , Acidente Vascular Cerebral/complicações , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA