Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 110(2-1): 024301, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39295007

RESUMO

Although instantaneous interactions are unphysical, a large variety of maximum entropy statistical inference methods match the model-inferred and the empirically measured equal-time correlation functions. Focusing on collective motion of active units, this constraint is reasonable when the interaction timescale is much faster than that of the interacting units, as in starling flocks, yet it fails in a number of counterexamples, as in leukocyte coordination (where signaling proteins diffuse among two cells). Here, we relax this assumption and develop a path integral approach to maximum-entropy framework, which includes delay in signaling. Our method is able to infer the strength of couplings and fields, but also the time required by the couplings to completely transfer information among the units. We demonstrate the validity of our approach providing excellent results on synthetic datasets of non-Markovian trajectories generated by the Heisenberg-Kuramoto and Vicsek models equipped with delayed interactions. As a proof of concept, we also apply the method to experiments on dendritic migration, where matching equal-time correlations results in a significant information loss.

2.
EMBO J ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026000

RESUMO

The cellular cortex provides crucial mechanical support and plays critical roles during cell division and migration. The proteins of the ERM family, comprised of ezrin, radixin, and moesin, are central to these processes by linking the plasma membrane to the actin cytoskeleton. To investigate the contributions of the ERM proteins to leukocyte migration, we generated single and triple ERM knockout macrophages. Surprisingly, we found that even in the absence of ERM proteins, macrophages still form the different actin structures promoting cell migration, such as filopodia, lamellipodia, podosomes, and ruffles. Furthermore, we discovered that, unlike every other cell type previously investigated, the single or triple knockout of ERM proteins does not affect macrophage migration in diverse contexts. Finally, we demonstrated that the loss of ERMs in macrophages does not affect the mechanical properties of their cortex. These findings challenge the notion that ERMs are universally essential for cortex mechanics and cell migration and support the notion that the macrophage cortex may have diverged from that of other cells to allow for their uniquely adaptive cortical plasticity.

3.
Dev Cell ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39047738

RESUMO

Spontaneous locomotion is a common feature of most metazoan cells, generally attributed to the properties of actomyosin networks. This force-producing machinery has been studied down to the most minute molecular details, especially in lamellipodium-driven migration. Nevertheless, how actomyosin networks work inside contraction-driven amoeboid cells still lacks unifying principles. Here, using stable motile blebs from HeLa cells as a model amoeboid motile system, we imaged the dynamics of the actin cortex at the single filament level and revealed the co-existence of three distinct rheological phases. We introduce "advected percolation," a process where rigidity percolation and active advection synergize, spatially organizing the actin network's mechanical properties into a minimal and generic locomotion mechanism. Expanding from our observations on simplified systems, we speculate that this model could explain, down to the single actin filament level, how amoeboid cells, such as cancer or immune cells, can propel efficiently through complex 3D environments.

4.
Lab Chip ; 24(16): 3930-3944, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-38993177

RESUMO

The metastatic cascade includes a blood circulation step for cells detached from the primary tumor. This stage involves significant shear stress as well as large and fast deformation as the cells circulate through the microvasculature. These mechanical stimuli are well reproduced in microfluidic devices. However, the recovery dynamics after deformation is also pivotal to understand how a cell can pass through the multiple capillary constrictions encountered during a single hemodynamic cycle. The microfluidic system developed in this work allows single cell recovery to be studied under flow-free conditions following pressure-actuated cell deformation inside constricted microchannels. We used three breast cancer cell lines - namely MCF-7, SK-BR3 and MDA-MB231 - as cellular models representative of different cancer phenotypes. Changing the size of the constriction allows exploration of moderate to strong deformation regimes, the latter being associated with the formation of plasma membrane blebs. In the regime of moderate deformation, all cell types display a fast elastic recovery behavior followed by a slower viscoelastic regime, well described by a double exponential decay. Among the three cell types, cells of the mesenchymal phenotype, i.e. the MDA-MB231 cells, are softer and the most fluid-like, in agreement with previous studies. Our main finding here is that the fast elastic recovery regime revealed by our novel microfluidic system is under the control of cell contractility ensured by the integrity of the cell cortex. Our results suggest that the cell cortex plays a major role in the transit of circulating tumor cells by allowing their fast morphological recovery after deformation in blood capillaries.


Assuntos
Técnicas Analíticas Microfluídicas , Humanos , Linhagem Celular Tumoral , Técnicas Analíticas Microfluídicas/instrumentação , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Células MCF-7
5.
Dev Cell ; 59(18): 2414-2428.e8, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38870943

RESUMO

In crowded microenvironments, migrating cells must find or make a path. Amoeboid cells are thought to find a path by deforming their bodies to squeeze through tight spaces. Yet, some amoeboid cells seem to maintain a near-spherical morphology as they move. To examine how they do so, we visualized amoeboid human melanoma cells in dense environments and found that they carve tunnels via bleb-driven degradation of extracellular matrix components without the need for proteolytic degradation. Interactions between adhesions and collagen at the cell front induce a signaling cascade that promotes bleb enlargement via branched actin polymerization. Large blebs abrade collagen, creating feedback between extracellular matrix structure, cell morphology, and polarization that enables both path generation and persistent movement.


Assuntos
Actinas , Movimento Celular , Matriz Extracelular , Melanoma , Proteólise , Humanos , Melanoma/patologia , Melanoma/metabolismo , Matriz Extracelular/metabolismo , Actinas/metabolismo , Colágeno/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Microambiente Tumoral , Adesão Celular
6.
Nat Immunol ; 25(7): 1193-1206, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834865

RESUMO

Immune cells experience large cell shape changes during environmental patrolling because of the physical constraints that they encounter while migrating through tissues. These cells can adapt to such deformation events using dedicated shape-sensing pathways. However, how shape sensing affects immune cell function is mostly unknown. Here, we identify a shape-sensing mechanism that increases the expression of the chemokine receptor CCR7 and guides dendritic cell migration from peripheral tissues to lymph nodes at steady state. This mechanism relies on the lipid metabolism enzyme cPLA2, requires nuclear envelope tensioning and is finely tuned by the ARP2/3 actin nucleation complex. We also show that this shape-sensing axis reprograms dendritic cell transcription by activating an IKKß-NF-κB-dependent pathway known to control their tolerogenic potential. These results indicate that cell shape changes experienced by immune cells can define their migratory behavior and immunoregulatory properties and reveal a contribution of the physical properties of tissues to adaptive immunity.


Assuntos
Movimento Celular , Células Dendríticas , Homeostase , Linfonodos , Camundongos Endogâmicos C57BL , Receptores CCR7 , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Linfonodos/imunologia , Linfonodos/citologia , Receptores CCR7/metabolismo , Camundongos , Movimento Celular/imunologia , Forma Celular , NF-kappa B/metabolismo , Camundongos Knockout , Transdução de Sinais/imunologia , Quinase I-kappa B/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo
7.
Curr Opin Cell Biol ; 89: 102381, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38905917

RESUMO

The actin cortex, commonly described as a thin 2-dimensional layer of actin filaments beneath the plasma membrane, is beginning to be recognized as part of a more dynamic and three-dimensional composite material. In this review, we focus on the elements that contribute to the three-dimensional architecture of the actin cortex. We also argue that actin-rich structures such as filopodia and stress fibers can be viewed as specialized integral parts of the 3D actin cortex. This broadens our definition of the cortex, shifting from its simplified characterization as a thin, two-dimensional layer of actin filaments.


Assuntos
Citoesqueleto de Actina , Actinas , Animais , Actinas/metabolismo , Actinas/química , Humanos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Pseudópodes/metabolismo , Pseudópodes/química , Membrana Celular/metabolismo , Membrana Celular/química
8.
Methods Mol Biol ; 2800: 115-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709482

RESUMO

The actin cortex is an essential element of the cytoskeleton allowing cells to control and modify their shape. It is involved in cell division and migration. However, probing precisely the physical properties of the actin cortex has proved to be challenging: it is a thin and dynamic material, and its location in the cell-directly under the plasma membrane-makes it difficult to study with standard light microscopy and cell mechanics techniques. In this chapter, we present a novel protocol to probe dynamically the thickness of the cortex and its fluctuations using superparamagnetic microbeads in a uniform magnetic field. A bead ingested by the cell and another outside the cell attract each other due to dipolar forces. By tracking their position with nanometer precision, one can measure the thickness of the cortex pinched between two beads and monitor its evolution in time. We first present the set of elements necessary to realize this protocol: a magnetic field generator adapted to a specific imaging setup and the aforementioned superparamagnetic microbeads. Then we detail the different steps of a protocol that can be used on diverse cell types, adherent or not.


Assuntos
Citoesqueleto de Actina , Animais , Humanos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Campos Magnéticos , Microesferas
9.
Trends Cell Biol ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38538441

RESUMO

Bleb-based migration, a conserved cell motility mode, has a crucial role in both physiological and pathological processes. Unlike the well-elucidated mechanisms of lamellipodium-based mesenchymal migration, the dynamics of bleb-based migration remain less understood. In this review, we highlight in a systematic way the establishment of front-rear polarity, bleb formation and extension, and the distinct regimes of bleb dynamics. We emphasize new evidence proposing a regulatory role of plasma membrane-cortex interactions in blebbing behavior and discuss the generation of force and its transmission during migration. Our analysis aims to deepen the understanding of the physical and molecular mechanisms of bleb-based migration, shedding light on its implications and significance for health and disease.

10.
Elife ; 122024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517935

RESUMO

Large transcellular pores elicited by bacterial mono-ADP-ribosyltransferase (mART) exotoxins inhibiting the small RhoA GTPase compromise the endothelial barrier. Recent advances in biophysical modeling point toward membrane tension and bending rigidity as the minimal set of mechanical parameters determining the nucleation and maximal size of transendothelial cell macroaperture (TEM) tunnels induced by bacterial RhoA-targeting mART exotoxins. We report that cellular depletion of caveolin-1, the membrane-embedded building block of caveolae, and depletion of cavin-1, the master regulator of caveolae invaginations, increase the number of TEMs per cell. The enhanced occurrence of TEM nucleation events correlates with a reduction in cell height due to the increase in cell spreading and decrease in cell volume, which, together with the disruption of RhoA-driven F-actin meshwork, favor membrane apposition for TEM nucleation. Strikingly, caveolin-1 specifically controls the opening speed of TEMs, leading to their dramatic 5.4-fold larger widening. Consistent with the increase in TEM density and width in siCAV1 cells, we record a higher lethality in CAV1 KO mice subjected to a catalytically active mART exotoxin targeting RhoA during staphylococcal bloodstream infection. Combined theoretical modeling with independent biophysical measurements of plasma membrane bending rigidity points toward a specific contribution of caveolin-1 to membrane stiffening in addition to the role of cavin-1/caveolin-1-dependent caveolae in the control of membrane tension homeostasis.


Assuntos
Caveolina 1 , Células Endoteliais , Animais , Camundongos , Cavéolas/metabolismo , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Exotoxinas/metabolismo
11.
Nat Commun ; 15(1): 1070, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326317

RESUMO

In eukaryotes, cytoplasmic and nuclear volumes are tightly regulated to ensure proper cell homeostasis. However, current methods to measure cytoplasmic and nuclear volumes, including confocal 3D reconstruction, have limitations, such as relying on two-dimensional projections or poor vertical resolution. Here, to overcome these limitations, we describe a method, N2FXm, to jointly measure cytoplasmic and nuclear volumes in single cultured adhering human cells, in real time, and across cell cycles. We find that this method accurately provides joint size over dynamic measurements and at different time resolutions. Moreover, by combining several experimental perturbations and analyzing a mathematical model including osmotic effects and tension, we show that N2FXm can give relevant insights on how mechanical forces exerted by the cytoskeleton on the nuclear envelope can affect the growth of nucleus volume by biasing nuclear import. Our method, by allowing for accurate joint nuclear and cytoplasmic volume dynamic measurements at different time resolutions, highlights the non-constancy of the nucleus/cytoplasm ratio along the cell cycle.


Assuntos
Núcleo Celular , Membrana Nuclear , Animais , Humanos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citosol , Membrana Nuclear/metabolismo , Citoesqueleto/metabolismo , Mamíferos
12.
Mol Cell ; 83(20): 3659-3668.e10, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37832547

RESUMO

The integrity of the nuclear envelope (NE) is essential for maintaining the structural stability of the nucleus. Rupture of the NE has been frequently observed in cancer cells, especially in the context of mechanical challenges, such as physical confinement and migration. However, spontaneous NE rupture events, without any obvious physical challenges to the cell, have also been described. The molecular mechanism(s) of these spontaneous NE rupture events remain to be explored. Here, we show that DNA damage and subsequent ATR activation leads to NE rupture. Upon DNA damage, lamin A/C is phosphorylated in an ATR-dependent manner, leading to changes in lamina assembly and, ultimately, NE rupture. In addition, we show that cancer cells with intrinsic DNA repair defects undergo frequent events of DNA-damage-induced NE rupture, which renders them extremely sensitive to further NE perturbations. Exploiting this NE vulnerability could provide a new angle to complement traditional, DNA-damage-based chemotherapy.


Assuntos
Lamina Tipo A , Membrana Nuclear , Membrana Nuclear/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Fosforilação , Dano ao DNA , DNA/metabolismo , Núcleo Celular/metabolismo
13.
Nat Aging ; 3(10): 1251-1268, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37723209

RESUMO

Aging is characterized by gradual immune dysfunction and increased disease risk. Genomic instability is considered central to the aging process, but the underlying mechanisms of DNA damage are insufficiently defined. Cells in confined environments experience forces applied to their nucleus, leading to transient nuclear envelope rupture (NER) and DNA damage. Here, we show that Lamin A/C protects lung alveolar macrophages (AMs) from NER and hallmarks of aging. AMs move within constricted spaces in the lung. Immune-specific ablation of lamin A/C results in selective depletion of AMs and heightened susceptibility to influenza virus-induced pathogenesis and lung cancer growth. Lamin A/C-deficient AMs that persist display constitutive NER marks, DNA damage and p53-dependent senescence. AMs from aged wild-type and from lamin A/C-deficient mice share a lysosomal signature comprising CD63. CD63 is required to limit damaged DNA in macrophages. We propose that NER-induced genomic instability represents a mechanism of aging in AMs.


Assuntos
Lamina Tipo A , Macrófagos Alveolares , Animais , Camundongos , Lamina Tipo A/genética , Membrana Nuclear , Pulmão , Envelhecimento/genética , Instabilidade Genômica
14.
Nat Biotechnol ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537501

RESUMO

Here we present a method to reduce the photobleaching of fluorescent proteins and the associated phototoxicity. It exploits a photophysical process known as reverse intersystem crossing, which we induce by near-infrared co-illumination during fluorophore excitation. This dual illumination method reduces photobleaching effects 1.5-9.2-fold, can be easily implemented on commercial microscopes and is effective in eukaryotic and prokaryotic cells with a wide range of fluorescent proteins.

15.
Cancers (Basel) ; 15(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37370838

RESUMO

Nodal T-follicular helper cell lymphoma, angioimmunoblastic-type (AITL), is characterized by constitutional symptoms, advanced-stage disease, and generalized lymphadenopathy. A genetic hallmark of this lymphoma is the frequent occurrence of the RHOA mutation G17V in neoplastic cells, which is observed in around 60% of patients. Because RHOA is involved in both T-cell receptor downstream signalling and cell migration, we hypothesized that the characteristic presentation of AITL could be the result of enhanced tumor cell migration. Therefore, this study aimed to elucidate the impact of the RHOA variant G17V on the migration of neoplastic T cells. We transfected the T-cell lymphoma cell lines HH and HuT78 to stably express the RHOA-G17V variant. RHOA-G17V-expressing T cells did not exhibit enhanced motility compared to empty-vector-transfected cells in microchannels, a 3D collagen gel, or primary human lymphatic tissue. Cells of the HH cell line expressing RHOA-G17V had an increased number of cells with cleaved collagen compared with the empty-vector-transfected cells. Therefore, we hypothesized that the early spread of AITL tumor cells may be related to remodelling of the extracellular matrix. Accordingly, we observed a significant negative correlation between the relative area of collagen in histological sections from 18 primary AITL and the allele frequency of the RHOA-G17V mutation. In conclusion, our results suggest that the characteristic presentation of AITL with early, widespread dissemination of lymphoma cells is not the result of an enhanced migration capacity due to the RHOA-G17V mutation; instead, this feature may rather be related to extracellular matrix remodelling.

16.
Nat Mater ; 22(7): 913-924, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37386067

RESUMO

Microtubules are cytoskeleton components with unique mechanical and dynamic properties. They are rigid polymers that alternate phases of growth and shrinkage. Nonetheless, the cells can display a subset of stable microtubules, but it is unclear whether microtubule dynamics and mechanical properties are related. Recent in vitro studies suggest that microtubules have mechano-responsive properties, being able to stabilize their lattice by self-repair on physical damage. Here we study how microtubules respond to cycles of compressive forces in living cells and find that microtubules become distorted, less dynamic and more stable. This mechano-stabilization depends on CLASP2, which relocates from the end to the deformed shaft of microtubules. This process seems to be instrumental for cell migration in confined spaces. Overall, these results demonstrate that microtubules in living cells have mechano-responsive properties that allow them to resist and even counteract the forces to which they are subjected, being a central mediator of cellular mechano-responses.


Assuntos
Citoesqueleto , Microtúbulos , Movimento Celular , Polímeros , Projetos de Pesquisa
18.
Methods Mol Biol ; 2608: 63-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653702

RESUMO

Physical confinement in microfluidic devices has become a common technique to induce and study cell migration in a large range of cell types. Confined migration was previously understudied due to the limitations of 2D migration assays but has emerged as an important mode of migration in the past decade. Furthermore, confinement improves the quality of the imaging and simplifies the analysis of trajectories by confining migration to the plane of acquisition. Protocols described in this chapter relate to methods extending the previously published 2D confinement technique. First, we explain a method to increase the complexity of the confinement chamber by microfabricating nanometer-sized PDMS grooves on the bottom surface, usually used for contact guidance studies. Then, we describe a method to perform the confinement on cells embedded inside a µm-thin 3D collagen gel. Finally, we describe an alternative method to confine cells based on agarose, so that cells can be fixed or drug perfused while being confined, which is currently not possible in the 2D confinement silicone-based device.


Assuntos
Comunicação Celular , Colágeno , Movimento Celular , Dispositivos Lab-On-A-Chip
20.
Nat Mater ; 22(5): 644-655, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36581770

RESUMO

The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.


Assuntos
Actinas , Neoplasias , DNA , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Citosol/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA