Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834865

RESUMO

Immune cells experience large cell shape changes during environmental patrolling because of the physical constraints that they encounter while migrating through tissues. These cells can adapt to such deformation events using dedicated shape-sensing pathways. However, how shape sensing affects immune cell function is mostly unknown. Here, we identify a shape-sensing mechanism that increases the expression of the chemokine receptor CCR7 and guides dendritic cell migration from peripheral tissues to lymph nodes at steady state. This mechanism relies on the lipid metabolism enzyme cPLA2, requires nuclear envelope tensioning and is finely tuned by the ARP2/3 actin nucleation complex. We also show that this shape-sensing axis reprograms dendritic cell transcription by activating an IKKß-NF-κB-dependent pathway known to control their tolerogenic potential. These results indicate that cell shape changes experienced by immune cells can define their migratory behavior and immunoregulatory properties and reveal a contribution of the physical properties of tissues to adaptive immunity.

2.
Methods Mol Biol ; 2800: 115-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709482

RESUMO

The actin cortex is an essential element of the cytoskeleton allowing cells to control and modify their shape. It is involved in cell division and migration. However, probing precisely the physical properties of the actin cortex has proved to be challenging: it is a thin and dynamic material, and its location in the cell-directly under the plasma membrane-makes it difficult to study with standard light microscopy and cell mechanics techniques. In this chapter, we present a novel protocol to probe dynamically the thickness of the cortex and its fluctuations using superparamagnetic microbeads in a uniform magnetic field. A bead ingested by the cell and another outside the cell attract each other due to dipolar forces. By tracking their position with nanometer precision, one can measure the thickness of the cortex pinched between two beads and monitor its evolution in time. We first present the set of elements necessary to realize this protocol: a magnetic field generator adapted to a specific imaging setup and the aforementioned superparamagnetic microbeads. Then we detail the different steps of a protocol that can be used on diverse cell types, adherent or not.


Assuntos
Citoesqueleto de Actina , Animais , Humanos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Campos Magnéticos , Microesferas
3.
Elife ; 122024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517935

RESUMO

Large transcellular pores elicited by bacterial mono-ADP-ribosyltransferase (mART) exotoxins inhibiting the small RhoA GTPase compromise the endothelial barrier. Recent advances in biophysical modeling point toward membrane tension and bending rigidity as the minimal set of mechanical parameters determining the nucleation and maximal size of transendothelial cell macroaperture (TEM) tunnels induced by bacterial RhoA-targeting mART exotoxins. We report that cellular depletion of caveolin-1, the membrane-embedded building block of caveolae, and depletion of cavin-1, the master regulator of caveolae invaginations, increase the number of TEMs per cell. The enhanced occurrence of TEM nucleation events correlates with a reduction in cell height due to the increase in cell spreading and decrease in cell volume, which, together with the disruption of RhoA-driven F-actin meshwork, favor membrane apposition for TEM nucleation. Strikingly, caveolin-1 specifically controls the opening speed of TEMs, leading to their dramatic 5.4-fold larger widening. Consistent with the increase in TEM density and width in siCAV1 cells, we record a higher lethality in CAV1 KO mice subjected to a catalytically active mART exotoxin targeting RhoA during staphylococcal bloodstream infection. Combined theoretical modeling with independent biophysical measurements of plasma membrane bending rigidity points toward a specific contribution of caveolin-1 to membrane stiffening in addition to the role of cavin-1/caveolin-1-dependent caveolae in the control of membrane tension homeostasis.


Assuntos
Caveolina 1 , Células Endoteliais , Animais , Camundongos , Cavéolas/metabolismo , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Exotoxinas/metabolismo
4.
Trends Cell Biol ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38538441

RESUMO

Bleb-based migration, a conserved cell motility mode, has a crucial role in both physiological and pathological processes. Unlike the well-elucidated mechanisms of lamellipodium-based mesenchymal migration, the dynamics of bleb-based migration remain less understood. In this review, we highlight in a systematic way the establishment of front-rear polarity, bleb formation and extension, and the distinct regimes of bleb dynamics. We emphasize new evidence proposing a regulatory role of plasma membrane-cortex interactions in blebbing behavior and discuss the generation of force and its transmission during migration. Our analysis aims to deepen the understanding of the physical and molecular mechanisms of bleb-based migration, shedding light on its implications and significance for health and disease.

5.
Nat Commun ; 15(1): 1070, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326317

RESUMO

In eukaryotes, cytoplasmic and nuclear volumes are tightly regulated to ensure proper cell homeostasis. However, current methods to measure cytoplasmic and nuclear volumes, including confocal 3D reconstruction, have limitations, such as relying on two-dimensional projections or poor vertical resolution. Here, to overcome these limitations, we describe a method, N2FXm, to jointly measure cytoplasmic and nuclear volumes in single cultured adhering human cells, in real time, and across cell cycles. We find that this method accurately provides joint size over dynamic measurements and at different time resolutions. Moreover, by combining several experimental perturbations and analyzing a mathematical model including osmotic effects and tension, we show that N2FXm can give relevant insights on how mechanical forces exerted by the cytoskeleton on the nuclear envelope can affect the growth of nucleus volume by biasing nuclear import. Our method, by allowing for accurate joint nuclear and cytoplasmic volume dynamic measurements at different time resolutions, highlights the non-constancy of the nucleus/cytoplasm ratio along the cell cycle.


Assuntos
Núcleo Celular , Membrana Nuclear , Animais , Humanos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citosol , Membrana Nuclear/metabolismo , Citoesqueleto/metabolismo , Mamíferos
6.
Mol Cell ; 83(20): 3659-3668.e10, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37832547

RESUMO

The integrity of the nuclear envelope (NE) is essential for maintaining the structural stability of the nucleus. Rupture of the NE has been frequently observed in cancer cells, especially in the context of mechanical challenges, such as physical confinement and migration. However, spontaneous NE rupture events, without any obvious physical challenges to the cell, have also been described. The molecular mechanism(s) of these spontaneous NE rupture events remain to be explored. Here, we show that DNA damage and subsequent ATR activation leads to NE rupture. Upon DNA damage, lamin A/C is phosphorylated in an ATR-dependent manner, leading to changes in lamina assembly and, ultimately, NE rupture. In addition, we show that cancer cells with intrinsic DNA repair defects undergo frequent events of DNA-damage-induced NE rupture, which renders them extremely sensitive to further NE perturbations. Exploiting this NE vulnerability could provide a new angle to complement traditional, DNA-damage-based chemotherapy.


Assuntos
Lamina Tipo A , Membrana Nuclear , Membrana Nuclear/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Fosforilação , Dano ao DNA , DNA/metabolismo , Núcleo Celular/metabolismo
7.
Nat Aging ; 3(10): 1251-1268, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37723209

RESUMO

Aging is characterized by gradual immune dysfunction and increased disease risk. Genomic instability is considered central to the aging process, but the underlying mechanisms of DNA damage are insufficiently defined. Cells in confined environments experience forces applied to their nucleus, leading to transient nuclear envelope rupture (NER) and DNA damage. Here, we show that Lamin A/C protects lung alveolar macrophages (AMs) from NER and hallmarks of aging. AMs move within constricted spaces in the lung. Immune-specific ablation of lamin A/C results in selective depletion of AMs and heightened susceptibility to influenza virus-induced pathogenesis and lung cancer growth. Lamin A/C-deficient AMs that persist display constitutive NER marks, DNA damage and p53-dependent senescence. AMs from aged wild-type and from lamin A/C-deficient mice share a lysosomal signature comprising CD63. CD63 is required to limit damaged DNA in macrophages. We propose that NER-induced genomic instability represents a mechanism of aging in AMs.


Assuntos
Lamina Tipo A , Macrófagos Alveolares , Animais , Camundongos , Lamina Tipo A/genética , Membrana Nuclear , Pulmão , Envelhecimento/genética , Instabilidade Genômica
8.
Nat Biotechnol ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537501

RESUMO

Here we present a method to reduce the photobleaching of fluorescent proteins and the associated phototoxicity. It exploits a photophysical process known as reverse intersystem crossing, which we induce by near-infrared co-illumination during fluorophore excitation. This dual illumination method reduces photobleaching effects 1.5-9.2-fold, can be easily implemented on commercial microscopes and is effective in eukaryotic and prokaryotic cells with a wide range of fluorescent proteins.

9.
Nat Mater ; 22(7): 913-924, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37386067

RESUMO

Microtubules are cytoskeleton components with unique mechanical and dynamic properties. They are rigid polymers that alternate phases of growth and shrinkage. Nonetheless, the cells can display a subset of stable microtubules, but it is unclear whether microtubule dynamics and mechanical properties are related. Recent in vitro studies suggest that microtubules have mechano-responsive properties, being able to stabilize their lattice by self-repair on physical damage. Here we study how microtubules respond to cycles of compressive forces in living cells and find that microtubules become distorted, less dynamic and more stable. This mechano-stabilization depends on CLASP2, which relocates from the end to the deformed shaft of microtubules. This process seems to be instrumental for cell migration in confined spaces. Overall, these results demonstrate that microtubules in living cells have mechano-responsive properties that allow them to resist and even counteract the forces to which they are subjected, being a central mediator of cellular mechano-responses.


Assuntos
Citoesqueleto , Microtúbulos , Movimento Celular , Polímeros , Projetos de Pesquisa
10.
Cancers (Basel) ; 15(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37370838

RESUMO

Nodal T-follicular helper cell lymphoma, angioimmunoblastic-type (AITL), is characterized by constitutional symptoms, advanced-stage disease, and generalized lymphadenopathy. A genetic hallmark of this lymphoma is the frequent occurrence of the RHOA mutation G17V in neoplastic cells, which is observed in around 60% of patients. Because RHOA is involved in both T-cell receptor downstream signalling and cell migration, we hypothesized that the characteristic presentation of AITL could be the result of enhanced tumor cell migration. Therefore, this study aimed to elucidate the impact of the RHOA variant G17V on the migration of neoplastic T cells. We transfected the T-cell lymphoma cell lines HH and HuT78 to stably express the RHOA-G17V variant. RHOA-G17V-expressing T cells did not exhibit enhanced motility compared to empty-vector-transfected cells in microchannels, a 3D collagen gel, or primary human lymphatic tissue. Cells of the HH cell line expressing RHOA-G17V had an increased number of cells with cleaved collagen compared with the empty-vector-transfected cells. Therefore, we hypothesized that the early spread of AITL tumor cells may be related to remodelling of the extracellular matrix. Accordingly, we observed a significant negative correlation between the relative area of collagen in histological sections from 18 primary AITL and the allele frequency of the RHOA-G17V mutation. In conclusion, our results suggest that the characteristic presentation of AITL with early, widespread dissemination of lymphoma cells is not the result of an enhanced migration capacity due to the RHOA-G17V mutation; instead, this feature may rather be related to extracellular matrix remodelling.

13.
Methods Mol Biol ; 2608: 63-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653702

RESUMO

Physical confinement in microfluidic devices has become a common technique to induce and study cell migration in a large range of cell types. Confined migration was previously understudied due to the limitations of 2D migration assays but has emerged as an important mode of migration in the past decade. Furthermore, confinement improves the quality of the imaging and simplifies the analysis of trajectories by confining migration to the plane of acquisition. Protocols described in this chapter relate to methods extending the previously published 2D confinement technique. First, we explain a method to increase the complexity of the confinement chamber by microfabricating nanometer-sized PDMS grooves on the bottom surface, usually used for contact guidance studies. Then, we describe a method to perform the confinement on cells embedded inside a µm-thin 3D collagen gel. Finally, we describe an alternative method to confine cells based on agarose, so that cells can be fixed or drug perfused while being confined, which is currently not possible in the 2D confinement silicone-based device.


Assuntos
Comunicação Celular , Colágeno , Movimento Celular , Dispositivos Lab-On-A-Chip
14.
Nat Mater ; 22(5): 644-655, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36581770

RESUMO

The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.


Assuntos
Actinas , Neoplasias , DNA , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Citosol/metabolismo , Transdução de Sinais
15.
Sci Signal ; 15(761): eabk2552, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36413598

RESUMO

To reach inflamed tissues from the circulation, neutrophils must overcome physical constraints imposed by the tissue architecture, such as the endothelial barrier or the three-dimensional (3D) interstitial space. In these microenvironments, neutrophils are forced to migrate through spaces smaller than their own diameter. One of the main challenges for cell passage through narrow gaps is the deformation of the nucleus, the largest and stiffest organelle in cells. Here, we showed that chemokines, the extracellular signals that guide cell migration in vivo, modulated nuclear plasticity to support neutrophil migration in restricted microenvironments. Exploiting microfabricated devices, we found that the CXC chemokine CXCL12 enhanced the nuclear pliability of mouse bone marrow-derived neutrophils to sustain their migration in 3D landscapes. This previously uncharacterized function of CXCL12 was mediated by the atypical chemokine receptor ACKR3 (also known as CXCR7), required protein kinase A (PKA) activity, and induced chromatin compaction, which resulted in enhanced cell migration in 3D. Thus, we propose that chemical cues regulate the nuclear plasticity of migrating leukocytes to optimize their motility in restricted microenvironments.


Assuntos
Núcleo Celular , Neutrófilos , Camundongos , Animais , Movimento Celular , Transdução de Sinais , Cromatina
16.
Biophys J ; 121(21): 4099-4108, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181271

RESUMO

Migrating cells exhibit various motility patterns, resulting from different migration mechanisms, cell properties, or cell-environment interactions. The complexity of cell dynamics is reflected, e.g., in the diversity of the observed forms of velocity autocorrelation function-which has been widely served as a measure of diffusivity and spreading. By analyzing the dynamics of migrating dendritic cells in vitro, we disentangle the contributions of direction θ and speed v to the velocity autocorrelation. We find that the ability of cells to maintain their speed or direction of motion is unequal, reflected in different temporal decays of speed and direction autocorrelation functions, ACv(t)∼t-1.2 and ACθ(t)∼t-0.5, respectively. The larger power-law exponent of ACv(t) indicates that the cells lose their speed memory considerably faster than the direction memory. Using numerical simulations, we investigate the influence of ACθ and ACv as well as the direction-speed cross correlation Cθ-v on the search time of a persistent random walker to find a randomly located target in confinement. Although ACθ and Cθ-v play the major roles, we find that the speed autocorrelation ACv can be also tuned to minimize the search time. Adopting an optimal ACv can reduce the search time even up to 10% compared with uncorrelated spontaneous speeds. Our results suggest that migrating cells can improve their search efficiency, especially in crowded environments, through the directional or speed persistence or the speed-direction correlation.


Assuntos
Células Dendríticas , Movimento (Física)
17.
Sci Adv ; 8(39): eabp8416, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36179021

RESUMO

Cell migration is essential to living organisms and deregulated in cancer. Single cell's migration ranges from traction-dependent mesenchymal motility to contractility-driven propulsive amoeboid locomotion, but collective cell migration has only been described as a focal adhesion-dependent and traction-dependent process. Here, we show that cancer cell clusters, from patients and cell lines, migrate without focal adhesions when confined into nonadhesive microfabricated channels. Clusters coordinate and behave like giant super cells, mobilizing their actomyosin contractility at the rear to power their migration. This polarized cortex does not sustain persistent retrograde flows, of cells or actin, like in the other modes of migration but rather harnesses fluctuating cell deformations, or jiggling. Theoretical physical modeling shows this is sufficient to create a gradient of friction forces and trigger directed cluster motion. This collective amoeboid mode of migration could foster metastatic spread by enabling cells to cross a wide spectrum of environments.

19.
J Cell Sci ; 135(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35662333

RESUMO

Cells exist in an astonishing range of volumes across and within species. However, our understanding of cell size control remains limited, owing in large part to the challenges associated with accurate determination of cell volume. Much of our comprehension of size regulation derives from yeast models, but even for these morphologically stereotypical cells, assessment of cell volume has mostly relied on proxies and extrapolations from two-dimensional measurements. Recently, the fluorescence exclusion method (FXm) was developed to evaluate the size of mammalian cells, but whether it could be applied to smaller cells remained unknown. Using specifically designed microfluidic chips and an improved data analysis pipeline, we show here that FXm reliably detects subtle differences in the volume of fission yeast cells, even for those with altered shapes. Moreover, it allows for the monitoring of dynamic volume changes at the single-cell level with high time resolution. Collectively, our work highlights how the coupling of FXm with yeast genetics will bring new insights into the complex biology of cell growth.


Assuntos
Saccharomyces cerevisiae , Schizosaccharomyces , Animais , Ciclo Celular , Tamanho Celular , Mamíferos , Microfluídica , Saccharomyces cerevisiae/genética
20.
J Cell Mol Med ; 26(12): 3495-3505, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35586951

RESUMO

Classic Hodgkin lymphoma (cHL) is usually characterized by a low tumour cell content, derived from crippled germinal centre B cells. Rare cases have been described in which the tumour cells show clonal T-cell receptor rearrangements. From a clinicopathological perspective, it is unclear if these cases should be classified as cHL or anaplastic large T-cell lymphoma (ALCL). Since we recently observed differences in the motility of ALCL and cHL tumour cells, here, we aimed to obtain a better understanding of T-cell-derived cHL by investigating their global proteomic profiles and their motility. In a proteomics analysis, when only motility-associated proteins were regarded, T-cell-derived cHL cell lines showed the highest similarity to ALK- ALCL cell lines. In contrast, T-cell-derived cHL cell lines presented a very low overall motility, similar to that observed in conventional cHL. Whereas all ALCL cell lines, as well as T-cell-derived cHL, predominantly presented an amoeboid migration pattern with uropod at the rear, conventional cHL never presented with uropods. The migration of ALCL cell lines was strongly impaired upon application of different inhibitors. This effect was less pronounced in cHL cell lines and almost invisible in T-cell-derived cHL. In summary, our cell line-derived data suggest that based on proteomics and migration behaviour, T-cell-derived cHL is a neoplasm that shares features with both cHL and ALCL and is not an ALCL with low tumour cell content. Complementary clinical studies on this lymphoma are warranted.


Assuntos
Doença de Hodgkin , Linfoma Anaplásico de Células Grandes , Doença de Hodgkin/genética , Doença de Hodgkin/metabolismo , Doença de Hodgkin/patologia , Humanos , Linfoma Anaplásico de Células Grandes/metabolismo , Linfoma Anaplásico de Células Grandes/patologia , Proteômica , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA