Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18414, 2024 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117747

RESUMO

Dengue is a global health concern, and the host-viral interactions that regulate disease severity are largely unknown. Detrimental effects of neutrophils in this disease have been reported, but the precise mechanisms and functional properties of dengue-activated neutrophils are not fully characterised. Here, we measured the effects of dengue virus serotype 3 (DV3) on neutrophil lifespan and functions. We show that DV3 extends neutrophil survival with a significant proportion of cells surviving for 72 h post-incubation. These effects on neutrophil survival were greater than those observed by adding GM-CSF and TNF-α alone, but these cytokines enhanced survival induced by the virus. Enhanced reactive oxygen species (ROS) generation was observed following incubation with DV3 activation and this ROS production was enhanced by co-incubation with priming agents. In addition, DV triggered the enhanced IL-8 expression by the majority of neutrophils and a low percentage of cells were activated to express MCP-1 (CCL2). A low number of neutrophils showed increased co-expression of the migratory markers, CCR7 and CXCR4 which could promote their migration towards lymph nodes. DV3 significantly upregulated the BCL-XL gene at 3, 12, and 24 h, and the Mcl-1 gene at 12 h, following treatment. We also show that DV3 induces the Mcl-1 protein stabilization similar to GM-CSF. This report sheds new light on the mechanisms by which neutrophils may contribute to the pathology of dengue disease via delayed apoptosis and generation of pro-inflammatory molecules, and raises the possibility that dengue-activated neutrophils may play a role in activating cells of adaptive immunity.


Assuntos
Apoptose , Vírus da Dengue , Dengue , Proteína de Sequência 1 de Leucemia de Células Mieloides , Neutrófilos , Espécies Reativas de Oxigênio , Vírus da Dengue/fisiologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Humanos , Dengue/imunologia , Dengue/virologia , Espécies Reativas de Oxigênio/metabolismo , Sorogrupo , Sobrevivência Celular
2.
Medicina (Kaunas) ; 59(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138272

RESUMO

Background and Objectives: Cervical cancer is one of the most common types of frequently found cancers in Thailand. One of the causative agents is the infection of the high-risk human papillomavirus (HPV) type 16 and 18. Traditional medicines are rich sources of bioactive compounds which are a valuable source for the development of novel cancer therapies. In this study, the therapeutic effects of 3 traditional medicines, KerraTM, KSTM, and MinozaTM, were studied on HeLa and CaSki cells. Materials and Methods: The effects of KerraTM, KSTM, and MinozaTM on cancer cells were evaluated through cytotoxicity and cell death assays. The infection assay using HPV-16 pseudovirus was also carried out. Results: All traditional medicines efficiently suppressed cell growths of HeLa and CaSki, with KerraTM being the most potent anticancer agent followed by KSTM and MinozaTM. KerraTM at 158 µg/mL and 261 µg/mL significantly increases the percentage inhibition of the HPV-16 pseudovirus infection in a pre-attachment step in a dose-dependent manner, while KSTM at 261 µg/mL efficiently inhibited viral infection in both pre-attachment and adsorption steps. However, KerraTM, KSTM, and MinozaTM at subtoxic concentrations could not reduce the viral E6 mRNA expressions of HPV-16 and HPV-18. Cell death assay by acridine orange/ethidium bromide showed that KerraTM increased population of dead cells in dose-dependent manner in both CaSki and HeLa. The percentage of secondary necrosis in KerraTM-treated CaSki was higher than that of HeLa cells, while the percentage of late apoptotic cells in HeLa was higher than that of CaSki, indicating that HeLa was more susceptible to KerraTM than CaSki. For KSTM and MinozaTM, these extracts at 250 µg/mL promoted autophagy over cell death. At 500 µg/mL, the percentage of dead cells in KerraTM was higher than that of KSTM and MinozaTM. Conclusions: KerraTM is a potent traditional medicine for promoting cancer cell death. KerraTM is possibly useful in the prevention and treatment of cervical cancer. Further investigation will be carried out to gain a better understanding of the biochemical mechanism and the pharmacological activity underlying this effect.


Assuntos
Antineoplásicos , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Células HeLa , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/tratamento farmacológico , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas Oncogênicas Virais/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA