Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(11): e0066123, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37850734

RESUMO

Toxoplasmosis is a critical health issue for immune-deficient individuals and the offspring of newly infected mothers. It is caused by a unicellular intracellular parasite called Toxoplasma gondii that is found worldwide. Although efficient drugs are commonly used to treat toxoplasmosis, serious adverse events are common. Therefore, new compounds with potent anti-T. gondii activity are needed to provide better suited treatments. We have tested compounds designed to target specifically histone deacetylase enzymes. Among the 55 compounds tested, we identified three compounds showing a concentration of drug required for 50% inhibition (IC50) in the low 100 nM range with a selectivity index of more than 100. These compounds are not only active at inhibiting the growth of the parasite in vitro but also at preventing some of the consequences of the acute disease in vivo. Two of these hydroxamate based compound also induce a hyper-acetylation of the parasite histones while the parasitic acetylated tubulin level remains unchanged. These findings suggest that the enzymes regulating histone acetylation are potent therapeutic targets for the treatment of acute toxoplasmosis.


Assuntos
Toxoplasma , Toxoplasmose , Humanos , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico
2.
Open Biol ; 12(8): 220015, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35920043

RESUMO

Protein phosphatase 1 (PP1) is a key enzyme for Plasmodium development. However, the detailed mechanisms underlying its regulation remain to be deciphered. Here, we report the functional characterization of the Plasmodium berghei leucine-rich repeat protein 1 (PbLRR1), an orthologue of SDS22, one of the most ancient and conserved PP1 interactors. Our study shows that PbLRR1 is expressed during intra-erythrocytic development of the parasite, and up to the zygote stage in mosquitoes. PbLRR1 can be found in complex with PbPP1 in both asexual and sexual stages and inhibits its phosphatase activity. Genetic analysis demonstrates that PbLRR1 depletion adversely affects the development of oocysts. PbLRR1 interactome analysis associated with phospho-proteomics studies identifies several novel putative PbLRR1/PbPP1 partners. Some of these partners have previously been characterized as essential for the parasite sexual development. Interestingly, and for the first time, Inhibitor 3 (I3), a well-known and direct interactant of Plasmodium PP1, was found to be drastically hypophosphorylated in PbLRR1-depleted parasites. These data, along with the detection of I3 with PP1 in the LRR1 interactome, strongly suggest that the phosphorylation status of PbI3 is under the control of the PP1-LRR1 complex and could contribute (in)directly to oocyst development. This study provides new insights into previously unrecognized PbPP1 fine regulation of Plasmodium oocyst development through its interaction with PbLRR1.


Assuntos
Proteínas de Repetições Ricas em Leucina , Plasmodium berghei , Animais , Oocistos/metabolismo , Fosforilação , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
3.
Microorganisms ; 10(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35336160

RESUMO

Parasites belonging to the Apicomplexa phylum still represent a major public health and world-wide socioeconomic burden that is greatly amplified by the spread of resistances against known therapeutic drugs. Therefore, it is essential to provide the scientific and medical communities with innovative strategies specifically targeting these organisms. In this review, we present an overview of the diversity of the phosphatome as well as the variety of functions that phosphatases display throughout the Apicomplexan parasites' life cycles. We also discuss how this diversity could be used for the design of innovative and specific new drugs/therapeutic strategies.

4.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162991

RESUMO

Malaria parasites require multiple phosphorylation and dephosphorylation steps to drive signaling pathways for proper differentiation and transformation. Several protein phosphatases, including protein phosphatase 1 (PP1), one of the main dephosphorylation enzymes, have been shown to be indispensable for the Plasmodium life cycle. The catalytic subunit of PP1 (PP1c) participates in cellular processes via dynamic interactions with a vast number of binding partners that contribute to its diversity of action. In this study, we used Plasmodium berghei transgenic parasite strains stably expressing PP1c or its inhibitor 2 (I2) tagged with mCherry, combined with the mCherry affinity pulldown of proteins from asexual and sexual stages, followed by mass spectrometry analyses. Mapped proteins were used to identify interactomes and to cluster functionally related proteins. Our findings confirm previously known physical interactions of PP1c and reveal enrichment of common biological processes linked to cellular component assembly in both schizonts and gametocytes to biosynthetic processes/translation in schizonts and to protein transport exclusively in gametocytes. Further, our analysis of PP1c and I2 interactomes revealed that nuclear export mediator factor and peptidyl-prolyl cis-trans isomerase, suggested to be essential in P. falciparum, could be potential targets of the complex PP1c/I2 in both asexual and sexual stages. Our study emphasizes the adaptability of Plasmodium PP1 and provides a fundamental study of the protein interaction landscapes involved in a myriad of events in Plasmodium, suggesting why it is crucial to the parasite and a source for alternative therapeutic strategies.


Assuntos
Malária/parasitologia , Plasmodium berghei/fisiologia , Proteína Fosfatase 1/metabolismo , Proteínas/metabolismo , Proteômica/métodos , Animais , Sítios de Ligação , Cromatografia Líquida , Estágios do Ciclo de Vida , Masculino , Camundongos , Organismos Geneticamente Modificados , Plasmodium berghei/patogenicidade , Domínios Proteicos , Mapas de Interação de Proteínas , Proteína Fosfatase 1/genética , Proteínas/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Espectrometria de Massas em Tandem
5.
Int J Antimicrob Agents ; 59(3): 106526, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35041939

RESUMO

INTRODUCTION: Toxoplasmosis is a major health issue worldwide, especially for immune-deficient individuals and the offspring of newly infected mothers. It is caused by a unicellular intracellular parasite called Toxoplasma gondii. Although the drugs commonly used to treat toxoplasmosis are efficient, they present serious side effects and adverse events are common. Therefore, there is a need for the discovery of new compounds with potent anti-Toxoplasma gondii activity. METHODS: This study tested compounds designed to target enzymes that are involved in the epigenetic regulation of gene expression. RESULTS: Among the most active compounds, an HDAC inhibitor showing an IC50 of 30 nM with a selectivity index above 100 was identified. MC1742 was active at inhibiting the growth of the parasite in vitro but also at preventing the consequences of the acute disease in vivo. This compound induced hyper-acetylation of histones, while the acetylated tubulin level remained unchanged. After MC1742 treatment, the parasite expression profile was profoundly changed with the activation of genes preferentially expressed in the sexual stages that are normally repressed in the tachyzoite stage. CONCLUSIONS: These findings suggest that this compound disturbs the Toxoplasma gondii gene expression program, inducing parasite death.


Assuntos
Parasitos , Toxoplasma , Animais , Epigênese Genética , Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Humanos
6.
Trends Parasitol ; 37(2): 154-164, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33036936

RESUMO

Protein phosphatase type 1 (PP1) forms a wide range of Ser/Thr-specific phosphatase holoenzymes which contain one catalytic subunit (PP1c), present in all eukaryotic cells, associated with variable subunits known as regulatory proteins. It has recently been shown that regulators take a leading role in the organization and the control of PP1 functions. Many studies have addressed the role of these regulators in diverse organisms, including humans, and investigated their link to diseases. In this review we summarize recent advances on the role of PP1c in Plasmodium, its interactome and regulators. As a proof of concept, peptides interfering with the regulator binding capacity of PP1c were shown to inhibit the growth of P. falciparum, suggesting their potential as drug precursors.


Assuntos
Malária/parasitologia , Plasmodium/enzimologia , Proteína Fosfatase 1/metabolismo , Humanos , Peptídeos/metabolismo , Ligação Proteica
7.
Bio Protoc ; 10(11): e3647, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659316

RESUMO

The study of host/pathogen interactions at the cellular level during Plasmodium intra-erythrocytic cycle requires differential extraction techniques aiming to analyze the different compartments of the infected cell. Various protocols have been proposed in the literature to study specific compartments and/or membranes in the infected erythrocyte. The task remains delicate despite the use of enzymes or detergents theoretically capable of degrading specific membranes inside the infected cell. The remit of this protocol is to propose a method to isolate the erythrocyte cytosol and ghosts from the other compartments of the infected cell via a percoll gradient. Also, the lysis of the erythrocyte membrane is done using equinatoxin II, which has proven to be more effective at erythrocyte lysis regardless of the cell infection status, compared to the commonly used streptolysin. The parasitophorous vacuole (PV) content is collected after saponin lysis, before recovering membrane and parasite cytosol proteins by Triton X-100 lysis. The lysates thus obtained are analyzed by Western blot to assess the accuracy of the various extraction steps. This protocol allows the separation of the host compartment from the parasite compartments (PV and parasite), leading to potential studies of host proteins as well as parasite proteins exported to the host cell.

8.
PLoS Pathog ; 15(7): e1007973, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31348803

RESUMO

The essential and distinct functions of Protein Phosphatase type 1 (PP1) catalytic subunit in eukaryotes are exclusively achieved through its interaction with a myriad of regulatory partners. In this work, we report the molecular and functional characterization of Gametocyte EXported Protein 15 (GEXP15), a Plasmodium specific protein, as a regulator of PP1. In vitro interaction studies demonstrated that GEXP15 physically interacts with PP1 through the RVxF binding motif in P. berghei. Functional assays showed that GEXP15 was able to increase PP1 activity and the mutation of the RVxF motif completely abolished this regulation. Immunoprecipitation assays of tagged GEXP15 or PP1 in P. berghei followed by immunoblot or mass spectrometry analyses confirmed their interaction and showed that they are present both in schizont and gametocyte stages in shared protein complexes involved in the spliceosome and proteasome pathways and known to play essential role in parasite development. Phenotypic analysis of viable GEXP15 deficient P. berghei blood parasites showed that they were unable to develop lethal infection in BALB/c mice or to establish experimental cerebral malaria in C57BL/6 mice. Further, although deficient parasites produced gametocytes they did not produce any oocysts/sporozoites indicating a high fitness cost in the mosquito. Global proteomic and phosphoproteomic analyses of GEXP15 deficient schizonts revealed a profound defect with a significant decrease in the abundance and an impact on phosphorylation status of proteins involved in regulation of gene expression or invasion. Moreover, depletion of GEXP15 seemed to impact mainly the abundance of some specific proteins of female gametocytes. Our study provides the first insight into the contribution of a PP1 regulator to Plasmodium virulence and suggests that GEXP15 affects both the asexual and sexual life cycle.


Assuntos
Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/fisiologia , Proteína Fosfatase 1/fisiologia , Proteínas de Protozoários/fisiologia , Animais , Anopheles/parasitologia , Eritrócitos/parasitologia , Feminino , Genes de Protozoários , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/fisiologia , Humanos , Malária/parasitologia , Malária/transmissão , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mosquitos Vetores/parasitologia , Plasmodium berghei/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteômica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Sci Rep ; 9(1): 8120, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31148576

RESUMO

Pseudokinases play key roles in many biological processes but they are poorly understood compared to active kinases. Eight putative pseudokinases have been predicted in Plasmodium species. We selected the unique pseudokinase belonging to tyrosine kinase like (TKL) family for detailed structural and functional analysis in P. falciparum and P. berghei. The primary structure of PfpTKL lacks residues critical for kinase activity, supporting its annotation as a pseudokinase. The recombinant pTKL pseudokinase domain was able to bind ATP, but lacked catalytic activity as predicted. The sterile alpha motif (SAM) and RVxF motifs of PfpTKL were found to interact with the P. falciparum proteins serine repeat antigen 5 (SERA5) and protein phosphatase type 1 (PP1) respectively, suggesting that pTKL has a scaffolding role. Furthermore, we found that PP1c activity in a heterologous model was modulated in an RVxF-dependent manner. During the trophozoite stages, PbpTKL was exported to infected erythrocytes where it formed complexes with proteins involved in cytoskeletal organization or host cell maturation and homeostasis. Finally, genetic analysis demonstrated that viable strains obtained by genomic deletion or knocking down PbpTKL did not affect the course of parasite intra-erythrocytic development or gametocyte emergence, indicating functional redundancy during these parasite stages.


Assuntos
Antígenos de Protozoários/metabolismo , Eritrócitos/parasitologia , Plasmodium/enzimologia , Proteína Fosfatase 1/metabolismo , Proteínas Tirosina Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Animais , Citoesqueleto/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Deleção de Genes , Humanos , Hidrólise , Camundongos , Estrutura Molecular , Filogenia , Dobramento de Proteína , Proteínas Recombinantes/metabolismo , Transcrição Gênica , Transgenes , Técnicas do Sistema de Duplo-Híbrido , Xenopus laevis
10.
Parasitol Res ; 118(6): 1993-1998, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31001677

RESUMO

Antimicrobial peptides (AMPs) are important components of the vertebrate and invertebrate innate immune systems. Although AMPs are widely recognized for their broad-spectrum activity against bacteria, fungi, and viruses, their activity against protozoan parasites has not been investigated in detail. In this study, we tested 10 AMPs from three different insect species: the greater wax moth Galleria mellonella (cecropin A-D), the fruit fly Drosophila melanogaster (drosocin, Mtk-1 and Mtk-2), and the blow fly Lucilia sericata (LSerPRP-2, LSerPRP-3 and stomoxyn). We tested each AMP against the protozoan parasite Plasmodium falciparum which is responsible for the most severe form of malaria in humans. We also evaluated the impact of these insect AMPs on mouse and pig erythrocytes. Whereas all AMPs showed low hemolytic effects towards mouse and pig erythrocytes, only D. melanogaster Mtk-1 and Mtk-2 significantly inhibited the growth of P. falciparum at low concentrations. Mtk-1 and Mtk-2 could therefore be considered as leads for the development of antiparasitic drugs targeting the clinically important asexual blood stage of P. falciparum.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antiparasitários/farmacologia , Proteínas de Drosophila/farmacologia , Drosophila melanogaster/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Glicopeptídeos/farmacologia , Humanos , Malária Falciparum/tratamento farmacológico , Camundongos , Mariposas/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Suínos
11.
Eur J Med Chem ; 161: 277-291, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366254

RESUMO

Despite the recent reductions in the global burden of malaria, this disease remains a devastating cause of death in tropical and subtropical regions. As there is no broadly effective vaccine for malaria, prevention and treatment still rely on chemotherapy. Unfortunately, emerging resistance to the gold standard artemisinin combination therapies means that new drugs with novel modes of action are urgently needed. In this context, Plasmodium histone modifying enzymes have emerged as potential drug targets, prompting us to develop and optimize compounds directed against such epigenetic targets. A panel of 51 compounds designed to target different epigenetic enzymes were screened for activity against Plasmodium falciparum parasites. Based on in vitro activity against drug susceptible and drug-resistant P. falciparum lines, selectivity index criterion and favorable pharmacokinetic properties, four compounds, one HDAC inhibitor (1) and three DNMT inhibitors (37, 43 and 45), were selected for preclinical studies in a mouse model of malaria. In vivo data showed that 37, 43 and 45 exhibited oral efficacy in the mouse model of Plasmodium berghei infection. These compounds represent promising starting points for the development of novel antimalarial drugs.


Assuntos
Antimaláricos/farmacologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Quinazolinas/farmacologia , Animais , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Fibroblastos/microbiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Conformação Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/crescimento & desenvolvimento , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade
12.
Front Microbiol ; 9: 2617, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429842

RESUMO

With its multiple regulatory partners, the conserved Protein Phosphatase type-1 (PP1) plays a central role in many functions of the biology of eukaryotic cells, including Plasmodium falciparum. Here, we characterized a protein named PfRCC-PIP, as a major partner of PfPP1. We established its direct interaction in vitro and its presence in complex with PfPP1 in the parasite. The use of Xenopus oocyte model revealed that RCC-PIP can interact with the endogenous PP1 and act in synergy with suboptimal doses of progesterone to trigger oocyte maturation, suggesting a regulatory effect on PP1. Reverse genetic studies suggested an essential role for RCC-PIP since no viable knock-out parasites could be obtained. Further, we demonstrated the capacity of protein region containing RCC1 motifs to interact with the parasite kinase CDPK7. These data suggest that this protein is both a kinase and a phosphatase anchoring protein that could provide a platform to regulate phosphorylation/dephosphorylation processes.

14.
Front Microbiol ; 7: 1682, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822206

RESUMO

Ancestral sequence reconstruction has been widely used to test evolution-based hypotheses. The genome of the European tick vector, Ixodes ricinus, encodes for defensin peptides with diverse antimicrobial activities against distantly related pathogens. These pathogens include fungi, Gram-negative, and Gram-positive bacteria, i.e., a wide antimicrobial spectrum. Ticks do not transmit these pathogens, suggesting that these defensins may act against a wide range of microbes encountered by ticks during blood feeding or off-host periods. As demonstrated here, these I. ricinus defensins are also effective against the apicomplexan parasite Plasmodium falciparum. To study the general evolution of antimicrobial activity in tick defensins, the ancestral amino acid sequence of chelicerate defensins, which existed approximately 444 million years ago, was reconstructed using publicly available scorpion and tick defensin sequences (named Scorpions-Ticks Defensins Ancestor, STiDA). The activity of STiDA was tested against P. falciparum and the same Gram-negative and Gram-positive bacteria that were used for the I. ricinus defensins. While some extant tick defensins exhibit a wide antimicrobial spectrum, the ancestral defensin showed moderate activity against one of the tested microbes, P. falciparum. This study suggests that amino acid variability and defensin family expansion increased the antimicrobial spectrum of ancestral tick defensins.

15.
Front Microbiol ; 7: 777, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303372

RESUMO

Protein phosphatase 1 (PP1c) is one of the main phosphatases whose function is shaped by many regulators to confer a specific location and a selective function for this enzyme. Here, we report that eukaryotic initiation factor 2ß of Plasmodium falciparum (PfeIF2ß) is an interactor of PfPP1c. Sequence analysis of PfeIF2ß revealed a deletion of 111 amino acids when compared to its human counterpart and the presence of two potential binding motifs to PfPP1 ((29)FGEKKK(34), (103)KVAW(106)). As expected, we showed that PfeIF2ß binds PfeIF2γ and PfeIF5, confirming its canonical interaction with partners of the translation complex. Studies of the PfeIF2ß-PfPP1 interaction using wild-type, single and double mutated versions of PfeIF2ß revealed that both binding motifs are critical. We next showed that PfeIF2ß is able to induce Germinal Vesicle Break Down (GVBD) when expressed in Xenopus oocytes, an indicator of its capacity to regulate PP1. Only combined mutations of both binding motifs abolished the interaction with PP1 and the induction of GVBD. In P. falciparum, although the locus is accessible for genetic manipulation, PfeIF2ß seems to play an essential role in intraerythrocytic cycle as no viable knockout parasites were detectable. Interestingly, as for PfPP1, the subcellular fractionation of P. falciparum localized PfeIF2ß in cytoplasm and nuclear extracts, suggesting a potential effect on PfPP1 in both compartments and raising the question of a non-canonical function of PfeIf2ß in the nucleus. Hence, the role played by PfeIF2ß in blood stage parasites could occur at multiple levels involving the binding to proteins of the translational complex and to PfPP1.

17.
BMC Genomics ; 17: 246, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26988354

RESUMO

BACKGROUND: Protein Phosphatase 1 (PP1) is an enzyme essential to cell viability in the malaria parasite Plasmodium falciparum (Pf). The activity of PP1 is regulated by the binding of regulatory subunits, of which there are up to 200 in humans, but only 3 have been so far reported for the parasite. To better understand the P. falciparum PP1 (PfPP1) regulatory network, we here report the use of three strategies to characterize the PfPP1 interactome: co-affinity purified proteins identified by mass spectrometry, yeast two-hybrid (Y2H) screening and in silico analysis of the P. falciparum predicted proteome. RESULTS: Co-affinity purification followed by MS analysis identified 6 PfPP1 interacting proteins (Pips) of which 3 contained the RVxF consensus binding, 2 with a Fxx[RK]x[RK] motif, also shown to be a PP1 binding motif and one with both binding motifs. The Y2H screens identified 134 proteins of which 30 present the RVxF binding motif and 20 have the Fxx[RK]x[RK] binding motif. The in silico screen of the Pf predicted proteome using a consensus RVxF motif as template revealed the presence of 55 potential Pips. As further demonstration, 35 candidate proteins were validated as PfPP1 interacting proteins in an ELISA-based assay. CONCLUSIONS: To the best of our knowledge, this is the first study on PfPP1 interactome. The data reports several conserved PP1 interacting proteins as well as a high number of specific interactors to PfPP1. Their analysis indicates a high diversity of biological functions for PP1 in Plasmodium. Based on the present data and on an earlier study of the Pf interactome, a potential implication of Pips in protein folding/proteolysis, transcription and pathogenicity networks is proposed. The present work provides a starting point for further studies on the structural basis of these interactions and their functions in P. falciparum.


Assuntos
Plasmodium falciparum/enzimologia , Proteína Fosfatase 1/metabolismo , Proteoma , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Ligação Proteica , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
18.
J Eukaryot Microbiol ; 63(3): 309-17, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26509699

RESUMO

To quantitatively assess the risk of contamination by Pneumocystis depending on the degree of immunosuppression (ID) of the exposed rat hosts, we developed an animal model, where rats went through different doses of dexamethasone. Then, natural and aerial transmission of Pneumocystis carinii occurred during cohousing of the rats undergoing gradual ID levels (receivers) with nude rats developing pneumocystosis (seeders). Following contact between receiver and seeder rats, the P. carinii burden of receiver rats was determined by toluidine blue ortho staining and by qPCR targeting the dhfr monocopy gene of this fungus. In this rat model, the level of circulating CD4(+) and CD8(+) T lymphocytes remained significantly stable and different for each dose of dexamethasone tested, thus reaching the goal of a new stable and gradual ID rat model. In addition, an inverse relationship between the P. carinii burden and the level of circulating CD4(+) or CD8(+) T lymphocytes was evidenced. This rat model may be used to study other opportunistic pathogens or even co-infections in a context of gradual ID.


Assuntos
Microbiologia do Ar , Modelos Animais de Doenças , Hospedeiro Imunocomprometido , Pneumocystis carinii/fisiologia , Pneumonia por Pneumocystis/microbiologia , Pneumonia por Pneumocystis/transmissão , Aerossóis , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Contagem de Colônia Microbiana , Dexametasona/administração & dosagem , Genes Fúngicos , Pulmão/microbiologia , Masculino , Pneumocystis carinii/efeitos dos fármacos , Pneumocystis carinii/crescimento & desenvolvimento , Pneumocystis carinii/isolamento & purificação , Ratos
19.
PLoS Negl Trop Dis ; 9(7): e0003920, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147973

RESUMO

BACKGROUND: The heptalaminate-covered, syncytial tegument is an important anatomical adaptation that enables schistosome parasites to maintain long-term, intravascular residence in definitive hosts. Investigation of the proteins present in this surface layer and the immune responses elicited by them during infection is crucial to our understanding of host/parasite interactions. Recent studies have revealed a number of novel tegumental surface proteins including three (SmCD59a, SmCD59b and Sm29) containing uPAR/Ly6 domains (renamed SmLy6A SmLy6B and SmLy6D in this study). While vaccination with SmLy6A (SmCD59a) and SmLy6D (Sm29) induces protective immunity in experimental models, human immunoglobulin responses to representative SmLy6 family members have yet to be thoroughly explored. METHODOLOGY/PRINCIPAL FINDINGS: Using a PSI-BLAST-based search, we present a comprehensive reanalysis of the Schistosoma mansoni Ly6 family (SmLy6A-K). Our examination extends the number of members to eleven (including three novel proteins) and provides strong evidence that the previously identified vaccine candidate Sm29 (renamed SmLy6D) is a unique double uPAR/Ly6 domain-containing representative. Presence of canonical cysteine residues, signal peptides and GPI-anchor sites strongly suggest that all SmLy6 proteins are cell surface-bound. To provide evidence that SmLy6 members are immunogenic in human populations, we report IgG1 (as well as IgG4 and IgE) responses against two surface-bound representatives (SmLy6A and SmLy6B) within a cohort of S. mansoni-infected Ugandan males before and after praziquantel treatment. While pre-treatment IgG1 prevalence for SmLy6A and SmLy6B differs amongst the studied population (7.4% and 25.3% of the cohort, respectively), these values are both higher than IgG1 prevalence (2.7%) for a sub-surface tegumental antigen, SmTAL1. Further, post-treatment IgG1 levels against surface-associated SmLy6A and SmLy6B significantly drop (p = 0.020 and p < 0.001, respectively) when compared to rising IgG1 levels against sub-surface SmTAL1. CONCLUSIONS/SIGNIFICANCE: Collectively, these results expand the number of SmLy6 proteins found within S. mansoni and specifically demonstrate that surface-associated SmLy6A and SmLy6B elicit immunological responses during infection in endemic communities.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/imunologia , Imunoglobulina G/imunologia , Praziquantel/administração & dosagem , Schistosoma mansoni/imunologia , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/imunologia , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Animais , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/química , Antígenos de Helmintos/genética , Criança , Estudos de Coortes , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Família Multigênica , Ratos Endogâmicos F344 , Schistosoma mansoni/química , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/genética , Esquistossomose mansoni/sangue , Esquistossomose mansoni/parasitologia , Alinhamento de Sequência , Adulto Jovem
20.
PLoS Negl Trop Dis ; 9(3): e0003593, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25774883

RESUMO

BACKGROUND: Schistosomiasis is a serious health problem especially in developing countries and affects more than 243 million people. Only few anthelmintic drugs are available up to now. A major obstacle for drug treatment is the different developmental stages and the varying host compartments during worm development. Anthelmintic drugs have been tested mainly on adult schistosomes or freshly transformed cercariae. Knowledge concerning the larval stages is lacking. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used in vitro-grown schistosomula (aged between 2 to 14 days) to investigate drug effects of the three anthelmintics praziquantel, artemether, and oxamniquine. Further, we analyzed the antibody accessibility of two exemplary schistosome antigens SmCD59a and SmKK7, before and after drug treatment. Our results demonstrated that praziquantel applied at a concentration of 1 µM inhibited development of all life stages. Application of 10 µM praziquantel led to dramatic morphological changes of all schistosomula. Artemether at 1 and 10 µM had differential effects depending on whether it was applied to 2-day as compared to 7- and 14-day schistosomula. While 2-day schistosomula were not killed but inhibited from further development, severe morphological damage was seen in 7- and 14-day schistosomula. Oxamniquine (1 and 10 µM) led to severe morphological impairment in all life stages. Analyzing the accessibility of the antigens SmCD59a and SmKK7 before drug treatment showed no antibody binding on living intact schistosomula. However, when schistosomula were treated with anthelmintics, both antigens became exposed on the larvae. Oxamniquine turned out to be most effective in promoting antibody binding to all schistosomula stages. CONCLUSION: This study has revealed marked differences in anthelmintic drug effects against larvae. Drug treatment increases surface antigen presentation and renders larvae accessible to antibody attack.


Assuntos
Anti-Helmínticos/farmacologia , Antígenos de Helmintos/análise , Antígenos CD59/análise , Schistosoma mansoni/efeitos dos fármacos , Animais , Artemeter , Artemisininas/farmacologia , Humanos , Masculino , Praziquantel/farmacologia , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Schistosoma mansoni/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA