Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(23): 234801, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563228

RESUMO

The breakthrough provided by plasma-based accelerators enabled unprecedented accelerating fields by boosting electron beams to gigaelectronvolt energies within a few centimeters [1-4]. This, in turn, allows the realization of ultracompact light sources based on free-electron lasers (FELs) [5], as demonstrated by two pioneering experiments that reported the observation of self-amplified spontaneous emission (SASE) driven by plasma-accelerated beams [6,7]. However, the lack of stability and reproducibility due to the intrinsic nature of the SASE process (whose amplification starts from the shot noise of the electron beam) may hinder their effective implementation for user purposes. Here, we report a proof-of-principle experiment using plasma-accelerated beams to generate stable and reproducible FEL light seeded by an external laser. FEL radiation is emitted in the infrared range, showing the typical exponential growth of its energy over six consecutive undulators. Compared to SASE, the seeded FEL pulses have energies 2 orders of magnitude larger and stability that is 3 times higher.

2.
Nature ; 605(7911): 659-662, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35614244

RESUMO

The possibility to accelerate electron beams to ultra-relativistic velocities over short distances by using plasma-based technology holds the potential for a revolution in the field of particle accelerators1-4. The compact nature of plasma-based accelerators would allow the realization of table-top machines capable of driving a free-electron laser (FEL)5, a formidable tool to investigate matter at the sub-atomic level by generating coherent light pulses with sub-ångström wavelengths and sub-femtosecond durations6,7. So far, however, the high-energy electron beams required to operate FELs had to be obtained through the use of conventional large-size radio-frequency (RF) accelerators, bound to a sizeable footprint as a result of their limited accelerating fields. Here we report the experimental evidence of FEL lasing by a compact (3-cm) particle-beam-driven plasma accelerator. The accelerated beams are completely characterized in the six-dimensional phase space and have high quality, comparable with state-of-the-art accelerators8. This allowed the observation of narrow-band amplified radiation in the infrared range with typical exponential growth of its intensity over six consecutive undulators. This proof-of-principle experiment represents a fundamental milestone in the use of plasma-based accelerators, contributing to the development of next-generation compact facilities for user-oriented applications9.

3.
Rev Sci Instrum ; 92(11): 113304, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852547

RESUMO

In a medical accelerator, real-time monitoring systems of the beam and dose delivered to the patient are mandatory. In this work, we present a compact current profile detector that has been designed and tested in the framework of the TOP-IMPLART (Intensity Modulated Proton Linear Accelerator for RadioTerapy) project. This project foresees the realization of a proton linear accelerator, currently under construction at ENEA Frascati, for proton therapy applications. The linac produces a pulsed proton beam with 3 µs duration at 50 Hz repetition rate with a pulse current between 0.5 and 50 µA. A large dynamic range and spatial constraints make the use of usual noninterceptive beam diagnostics unfeasible. Therefore, the use of a beam current monitor based on a passive RF cavity working in the TM010 mode has been proposed. This paper reports the electromagnetic design of the device guided by a simplified analytical model. A prototype of such a device has been realized, characterized, and tested on the linac with a 35 MeV beam varying the beam current. The test results in air and in vacuum, together with the signal detection systems used, are presented.


Assuntos
Terapia com Prótons , Humanos , Aceleradores de Partículas , Prótons
4.
Phys Rev Lett ; 122(11): 114801, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30951354

RESUMO

The development of compact accelerator facilities providing high-brightness beams is one of the most challenging tasks in the field of next-generation compact and cost affordable particle accelerators, to be used in many fields for industrial, medical, and research applications. The ability to shape the beam longitudinal phase space, in particular, plays a key role in achieving high-peak brightness. Here we present a new approach that allows us to tune the longitudinal phase space of a high-brightness beam by means of plasma wakefields. The electron beam passing through the plasma drives large wakefields that are used to manipulate the time-energy correlation of particles along the beam itself. We experimentally demonstrate that such a solution is highly tunable by simply adjusting the density of the plasma and can be used to imprint or remove any correlation onto the beam. This is a fundamental requirement when dealing with largely time-energy correlated beams coming from future plasma accelerators.

5.
Phys Rev Lett ; 121(17): 174801, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30411933

RESUMO

Plasma-based technology promises a tremendous reduction in size of accelerators used for research, medical, and industrial applications, making it possible to develop tabletop machines accessible for a broader scientific community. By overcoming current limits of conventional accelerators and pushing particles to larger and larger energies, the availability of strong and tunable focusing optics is mandatory also because plasma-accelerated beams usually have large angular divergences. In this regard, active-plasma lenses represent a compact and affordable tool to generate radially symmetric magnetic fields several orders of magnitude larger than conventional quadrupoles and solenoids. However, it has been recently proved that the focusing can be highly nonlinear and induce a dramatic emittance growth. Here, we present experimental results showing how these nonlinearities can be minimized and lensing improved. These achievements represent a major breakthrough toward the miniaturization of next-generation focusing devices.

6.
Phys Med Biol ; 63(5): 055018, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29265011

RESUMO

Proton and carbon ion beams are used in the clinical practice for external radiotherapy treatments achieving, for selected indications, promising and superior clinical results with respect to x-ray based radiotherapy. Other ions, like [Formula: see text] have recently been considered as projectiles in particle therapy centres and might represent a good compromise between the linear energy transfer and the radiobiological effectiveness of [Formula: see text] ion and proton beams, allowing improved tumour control probability and minimising normal tissue complication probability. All the currently used p, [Formula: see text] and [Formula: see text] ion beams allow achieving sharp dose gradients on the boundary of the target volume, however the accurate dose delivery is sensitive to the patient positioning and to anatomical variations with respect to photon therapy. This requires beam range and/or dose release measurement during patient irradiation and therefore the development of dedicated monitoring techniques. All the proposed methods make use of the secondary radiation created by the beam interaction with the patient and, in particular, in the case of [Formula: see text] ion beams are also able to exploit the significant charged radiation component. Measurements performed to characterise the charged secondary radiation created by [Formula: see text] and [Formula: see text] particle therapy beams are reported. Charged secondary yields, energy spectra and emission profiles produced in a poly-methyl methacrylate (PMMA) target by [Formula: see text] and [Formula: see text] beams of different therapeutic energies were measured at 60° and 90° with respect to the primary beam direction. The secondary yield of protons produced along the primary beam path in a PMMA target was obtained. The energy spectra of charged secondaries were obtained from time-of-flight information, whereas the emission profiles were reconstructed exploiting tracking detector information. The obtained measurements are in agreement with results reported in the literature and suggests the feasibility of range monitoring based on charged secondary particle detection: the implications for particle therapy monitoring applications are also discussed.


Assuntos
Radioterapia com Íons Pesados/efeitos adversos , Hélio/efeitos adversos , Polimetil Metacrilato/efeitos da radiação , Monitoramento de Radiação/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Relação Dose-Resposta à Radiação , Humanos , Espalhamento de Radiação
7.
Phys Med Biol ; 62(4): 1438-1455, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28114112

RESUMO

Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z > 1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing. With respect to protons, such beams are characterized by their reduced multiple scattering inside the body, increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands online dose monitoring techniques, crucial to improving the quality assurance of any treatment: possible patient mis-positioning and biological tissue changes with respect to the planning CT scan could negatively affect the outcome of the therapy. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Among these secondary products, prompt photons are produced by nuclear de-excitation processes, and at present, different dose monitoring and beam range verification techniques based on prompt-γ detection are being proposed. It is hence of importance to perform γ yield measurement in therapeutic-like conditions. In this paper we report on the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a poly-methyl methacrylate (PMMA) beam stopping target. The measurements were performed at the Heidelberg Ion-Beam Therapy Center (HIT) with beams of different energies. An LYSO scintillator, placed at [Formula: see text] and [Formula: see text] with respect to the beam direction, was used as the photon detector. The obtained γ yields for the carbon ion beams are compared with results from the literature, while no other results from helium and oxygen beams have been published yet. A discussion on the expected resolution of a slit camera detector is presented, demonstrating the feasibility of a prompt-γ-based monitoring technique for PT treatments using helium, carbon and oxygen ion beams.


Assuntos
Radioterapia com Íons Pesados/métodos , Fótons , Polimetil Metacrilato/efeitos da radiação , Contagem de Cintilação/métodos , Carbono/química , Carbono/uso terapêutico , Radioterapia com Íons Pesados/efeitos adversos , Radioterapia com Íons Pesados/normas , Hélio/química , Hélio/uso terapêutico , Humanos , Transferência Linear de Energia , Terapia com Prótons , Eficiência Biológica Relativa , Contagem de Cintilação/instrumentação
8.
Phys Med Biol ; 62(4): 1291-1309, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28114124

RESUMO

Nowadays there is a growing interest in particle therapy treatments exploiting light ion beams against tumors due to their enhanced relative biological effectiveness and high space selectivity. In particular promising results are obtained by the use of 4He projectiles. Unlike the treatments performed using protons, the beam ions can undergo a fragmentation process when interacting with the atomic nuclei in the patient body. In this paper the results of measurements performed at the Heidelberg Ion-Beam Therapy center are reported. For the first time the absolute fluxes and the energy spectra of the fragments-protons, deuterons, and tritons-produced by 4He ion beams of 102, 125 and 145 MeV u-1 energies on a poly-methyl methacrylate target were evaluated at different angles. The obtained results are particularly relevant in view of the necessary optimization and review of the treatment planning software being developed for clinical use of 4He beams in clinical routine and the relative bench-marking of Monte Carlo algorithm predictions.


Assuntos
Hélio/uso terapêutico , Imagens de Fantasmas , Polimetil Metacrilato/química , Monitoramento de Radiação/métodos , Software , Algoritmos , Humanos , Método de Monte Carlo , Prótons , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa
9.
Sci Rep ; 4: 4401, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24646766

RESUMO

The background induced by the high penetration power of the radiation is the main limiting factor of the current radio-guided surgery (RGS). To partially mitigate it, a RGS with ß(+)-emitting radio-tracers has been suggested in literature. Here we propose the use of ß(-)-emitting radio-tracers and ß(-) probes and discuss the advantage of this method with respect to the previously explored ones: the electron low penetration power allows for simple and versatile probes and could extend RGS to tumours for which background originating from nearby healthy tissue makes probes less effective. We developed a ß(-) probe prototype and studied its performances on phantoms. By means of a detailed simulation we have also extrapolated the results to estimate the performances in a realistic case of meningioma, pathology which is going to be our first in-vivo test case. A good sensitivity to residuals down to 0.1 ml can be reached within 1 s with an administered activity smaller than those for PET-scans thus making the radiation exposure to medical personnel negligible.


Assuntos
Partículas beta , Elétrons , Imagens de Fantasmas , Cirurgia Assistida por Computador/instrumentação , Humanos , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/cirurgia , Meningioma/patologia , Meningioma/cirurgia , Sensibilidade e Especificidade , Cirurgia Assistida por Computador/métodos , Microambiente Tumoral , Radioisótopos de Ítrio
10.
Phys Med Biol ; 59(7): 1857-72, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24625560

RESUMO

The radiation used in hadrontherapy treatments interacts with the patient body producing secondary particles, either neutral or charged, that can be used for dose and Bragg peak monitoring and to provide a fast feedback on the treatment plans. Recent results obtained from the authors on simplified setups (mono-energetic primary beams interacting with homogeneous tissue-like target) have already indicated the correlation that exists between the flux of these secondaries coming from the target (e.g. protons and photons) and the position of the primary beam Bragg peak. In this paper, the measurements of charged particle fluxes produced by the interaction of a 220 MeV/u carbon ion beam at GSI, Darmstadt, with a polymethyl methacrylate target are reported. The emission region of protons (p), deuterons (d) and tritons (t) has been characterized using a drift chamber while the particle time-of-flight, used to compute the kinetic energy spectra, was measured with a LYSO scintillator. The energy released in the LYSO crystal was used for particle identification purposes. The measurements were repeated with the setup at 60° and 90° with respect to the primary beam direction. The accuracy on the fragments emission profile reconstruction and its relationship with the Bragg peak position have been studied. Based on the acquired experimental evidence, a method to monitor the dose profile and the position of the Bragg peak inside the target is proposed.


Assuntos
Carbono/uso terapêutico , Polimetil Metacrilato , Radiometria/métodos , Método de Monte Carlo
11.
Phys Med Biol ; 57(18): 5667-78, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22935644

RESUMO

Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose-monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose-monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements carried out with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a poly-methyl methacrylate target. Charged secondary particles, produced at 90° with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight have been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time-of-flight information, and their emission region has been reconstructed backtracking from the drift chamber to the target. Moreover, a position scan of the target indicates that the reconstructed emission region follows the movement of the expected Bragg peak position. Exploiting the reconstruction of the emission region, an accuracy on the Bragg peak determination in the submillimeter range has been obtained. The measured differential production rate for protons produced with E(Prod)(kin) > 83 MeV and emitted at 90° with respect to the beam line is dN(P)/(dN(C)dΩ) (E(Prod)(kin) > 83 MeV, θ = 90°) = (2.69 ± 0.08(stat) ± 0.12(sys)) × 10⁻4 sr⁻¹.


Assuntos
Radioterapia com Íons Pesados , Polimetil Metacrilato , Radiometria/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA