Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Environ Microbiome ; 19(1): 12, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383442

RESUMO

BACKGROUND: Potato seed tubers are colonized and inhabited by soil-borne microbes, that can affect the performance of the emerging daughter plant in the next season. In this study, we investigated the intergenerational inheritance of microbiota from seed tubers to next-season daughter plants under field condition by amplicon sequencing of bacterial and fungal microbiota associated with tubers and roots, and tracked the microbial transmission from different seed tuber compartments to sprouts. RESULTS: We observed that field of production and potato genotype significantly (P < 0.01) affected the composition of the seed tuber microbiome and that these differences persisted during winter storage of the seed tubers. Remarkably, when seed tubers from different production fields were planted in a single trial field, the microbiomes of daughter tubers and roots of the emerging plants could still be distinguished (P < 0.01) according to the production field of the seed tuber. Surprisingly, we found little vertical inheritance of field-unique microbes from the seed tuber to the daughter tubers and roots, constituting less than 0.2% of their respective microbial communities. However, under controlled conditions, around 98% of the sprout microbiome was found to originate from the seed tuber and had retained their field-specific patterns. CONCLUSIONS: The field of production shapes the microbiome of seed tubers, emerging potato plants and even the microbiome of newly formed daughter tubers. Different compartments of seed tubers harbor distinct microbiomes. Both bacteria and fungi on seed tubers have the potential of being vertically transmitted to the sprouts, and the sprout subsequently promotes proliferation of a select number of microbes from the seed tuber. Recognizing the role of plant microbiomes in plant health, the initial microbiome of seed tubers specifically or planting materials in general is an overlooked trait. Elucidating the relative importance of the initial microbiome and the mechanisms by which the origin of planting materials affect microbiome assembly will pave the way for the development of microbiome-based predictive models that may predict the quality of seed tuber lots, ultimately facilitating microbiome-improved potato cultivation.

2.
Nat Microbiol ; 8(12): 2349-2364, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973867

RESUMO

Hyaloperonospora arabidopsidis (Hpa) is an obligately biotrophic downy mildew that is routinely cultured on Arabidopsis thaliana hosts that harbour complex microbiomes. We hypothesized that the culturing procedure proliferates Hpa-associated microbiota (HAM) in addition to the pathogen and exploited this model system to investigate which microorganisms consistently associate with Hpa. Using amplicon sequencing, we found nine bacterial sequence variants that are shared between at least three out of four Hpa cultures in the Netherlands and Germany and comprise 34% of the phyllosphere community of the infected plants. Whole-genome sequencing showed that representative HAM bacterial isolates from these distinct Hpa cultures are isogenic and that an additional seven published Hpa metagenomes contain numerous sequences of the HAM. Although we showed that HAM benefit from Hpa infection, HAM negatively affect Hpa spore formation. Moreover, we show that pathogen-infected plants can selectively recruit HAM to both their roots and shoots and form a soil-borne infection-associated microbiome that helps resist the pathogen. Understanding the mechanisms by which infection-associated microbiomes are formed might enable breeding of crop varieties that select for protective microbiomes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Oomicetos , Arabidopsis/genética , Arabidopsis/microbiologia , Doenças das Plantas/microbiologia , Oomicetos/genética
3.
Mol Plant ; 16(7): 1160-1177, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37282370

RESUMO

Growth- and health-promoting bacteria can boost crop productivity in a sustainable way. Pseudomonas simiae WCS417 is such a bacterium that efficiently colonizes roots, modifies the architecture of the root system to increase its size, and induces systemic resistance to make plants more resistant to pests and pathogens. Our previous work suggested that WCS417-induced phenotypes are controlled by root cell-type-specific mechanisms. However, it remains unclear how WCS417 affects these mechanisms. In this study, we transcriptionally profiled five Arabidopsis thaliana root cell types following WCS417 colonization. We found that the cortex and endodermis have the most differentially expressed genes, even though they are not in direct contact with this epiphytic bacterium. Many of these genes are associated with reduced cell wall biogenesis, and mutant analysis suggests that this downregulation facilitates WCS417-driven root architectural changes. Furthermore, we observed elevated expression of suberin biosynthesis genes and increased deposition of suberin in the endodermis of WCS417-colonized roots. Using an endodermal barrier mutant, we showed the importance of endodermal barrier integrity for optimal plant-beneficial bacterium association. Comparison of the transcriptome profiles in the two epidermal cell types that are in direct contact with WCS417-trichoblasts that form root hairs and atrichoblasts that do not-implies a difference in potential for defense gene activation. While both cell types respond to WCS417, trichoblasts displayed both higher basal and WCS417-dependent activation of defense-related genes compared with atrichoblasts. This suggests that root hairs may activate root immunity, a hypothesis that is supported by differential immune responses in root hair mutants. Taken together, these results highlight the strength of cell-type-specific transcriptional profiling to uncover "masked" biological mechanisms underlying beneficial plant-microbe associations.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Transcriptoma/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Fenótipo , Raízes de Plantas/metabolismo
4.
Elife ; 122023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37338964

RESUMO

Intercellular signalling is an indispensable part of multicellular life. Understanding the commonalities and differences in how signalling molecules function in two remote branches of the tree of life may shed light on the reasons these molecules were originally recruited for intercellular signalling. Here we review the plant function of three highly studied animal intercellular signalling molecules, namely glutamate, γ-aminobutyric acid (GABA), and melatonin. By considering both their signalling function in plants and their broader physiological function, we suggest that molecules with an original function as key metabolites or active participants in reactive ion species scavenging have a high chance of becoming intercellular signalling molecules. Naturally, the evolution of machinery to transduce a message across the plasma membrane is necessary. This fact is demonstrated by three other well-studied animal intercellular signalling molecules, namely serotonin, dopamine, and acetylcholine, for which there is currently no evidence that they act as intercellular signalling molecules in plants.


Assuntos
Melatonina , Animais , Melatonina/metabolismo , Ácido Glutâmico/metabolismo , Plantas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Transdução de Sinais
5.
Methods Mol Biol ; 2665: 47-62, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37166592

RESUMO

Iron (Fe) plays a central role in the vital processes of a plant. The Fe status of a plant influences growth and immunity, but it also dictates interactions of roots with soil microbiota through the production of Fe mobilizing, antimicrobial fluorescent phenolic compounds called coumarins. To adapt to low Fe availability in the soil, plants deploy an efficient Fe deficiency response. Interestingly, this Fe deficiency response is hijacked by root-colonizing microbes in the root microbiome to establish a mutually beneficial relationship. In this chapter, we describe how we cultivate plants and microbes to study the interaction between plants, beneficial rhizobacteria, and the plant's Fe deficiency response. We describe (a) how we study activity and localization of these responses by assessing gene-specific promoter activities using GUS assays, (b) how we visualize root-secreted coumarins in response to Fe deficiency and colonization by beneficial rhizobacteria, and (c) how we prepare our samples for metabolite extraction and reverse-transcriptase quantitative PCR to analyze the expression of marker genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Deficiências de Ferro , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Raízes de Plantas/metabolismo , Solo , Regulação da Expressão Gênica de Plantas
6.
Nat Microbiol ; 8(8): 1434-1449, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37248429

RESUMO

Competition for iron is an important factor for microbial niche establishment in the rhizosphere. Pathogenic and beneficial symbiotic bacteria use various secretion systems to interact with their hosts and acquire limited resources from the environment. Bacillus spp. are important plant commensals that encode a type VII secretion system (T7SS). However, the function of this secretion system in rhizobacteria-plant interactions is unclear. Here we use the beneficial rhizobacterium Bacillus velezensis SQR9 to show that the T7SS and the major secreted protein YukE are critical for root colonization. In planta experiments and liposome-based experiments demonstrate that secreted YukE inserts into the plant plasma membrane and causes root iron leakage in the early stage of inoculation. The increased availability of iron promotes root colonization by SQR9. Overall, our work reveals a previously undescribed role of the T7SS in a beneficial rhizobacterium to promote colonization and thus plant-microbe interactions.


Assuntos
Sistemas de Secreção Tipo VII , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Simbiose , Rizosfera
8.
Phytopathology ; 113(8): 1369-1379, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36858028

RESUMO

Despite the numerous benefits plants receive from probiotics, maintaining consistent results across applications is still a challenge. Cultivation-independent methods associated with reduced sequencing costs have considerably improved the overall understanding of microbial ecology in the plant environment. As a result, now, it is possible to engineer a consortium of microbes aiming for improved plant health. Such synthetic microbial communities (SynComs) contain carefully chosen microbial species to produce the desired microbiome function. Microbial biofilm formation, production of secondary metabolites, and ability to induce plant resistance are some of the microbial traits to consider when designing SynComs. Plant-associated microbial communities are not assembled randomly. Ecological theories suggest that these communities have a defined phylogenetic organization structured by general community assembly rules. Using machine learning, we can study these rules and target microbial functions that generate desired plant phenotypes. Well-structured assemblages are more likely to lead to a stable SynCom that thrives under environmental stressors as compared with the classical selection of single microbial activities or taxonomy. However, ensuring microbial colonization and long-term plant phenotype stability is still one of the challenges to overcome with SynComs, as the synthetic community may change over time with microbial horizontal gene transfer and retained mutations. Here, we explored the advances made in SynCom research regarding plant health, focusing on bacteria, as they are the most dominant microbial form compared with other members of the microbiome and the most commonly found in SynCom studies.

9.
J Exp Bot ; 74(5): 1690-1704, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36560910

RESUMO

Insect herbivores are amongst the most destructive plant pests, damaging both naturally occurring and domesticated plants. As sessile organisms, plants make use of structural and chemical barriers to counteract herbivores. However, over 75% of herbivorous insect species are well adapted to their host's defenses and these specialists are generally difficult to ward off. By actively antagonizing the number of insect eggs deposited on plants, future damage by the herbivore's offspring can be limited. Therefore, it is important to understand which plant traits influence attractiveness for oviposition, especially for specialist insects that are well adapted to their host plants. In this study, we investigated the oviposition preference of Pieris butterflies (Lepidoptera: Pieridae) by offering them the choice between 350 different naturally occurring Arabidopsis accessions. Using a genome-wide association study of the oviposition data and subsequent fine mapping with full genome sequences of 164 accessions, we identified WRKY42 and AOC1 as candidate genes that are associated with the oviposition preference observed for Pieris butterflies. Host plant choice assays with Arabidopsis genotypes impaired in WRKY42 or AOC1 function confirmed a clear role for WRKY42 in oviposition preference of female Pieris butterflies, while for AOC1 the effect was mild. In contrast, WRKY42-impaired plants, which were preferred for oviposition by butterflies, negatively impacted offspring performance. These findings exemplify that plant genotype can have opposite effects on oviposition preference and caterpillar performance. This knowledge can be used for breeding trap crops or crops that are unattractive for oviposition by pest insects.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Borboletas , Animais , Feminino , Borboletas/genética , Larva , Estudo de Associação Genômica Ampla , Arabidopsis/genética , Fatores de Transcrição , Oviposição , Melhoramento Vegetal , Herbivoria , Plantas
10.
Sci Rep ; 12(1): 22473, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36577764

RESUMO

Plants deposit photosynthetically-fixed carbon in the rhizosphere, the thin soil layer directly around the root, thereby creating a hospitable environment for microbes. To manage the inhabitants of this nutrient-rich environment, plant roots exude and dynamically adjust microbe-attracting and -repelling compounds to stimulate specific members of the microbiome. Previously, we demonstrated that foliar infection of Arabidopsis thaliana by the biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) leads to a disease-induced modification of the rhizosphere microbiome. Soil conditioned with Hpa-infected plants provided enhanced protection against foliar downy mildew infection in a subsequent population of plants, a phenomenon dubbed the soil-borne legacy (SBL). Here, we show that for the creation of the SBL, plant-produced coumarins play a prominent role as coumarin-deficient myb72 and f6'h1 mutants were defective in creating a Hpa-induced SBL. Root exudation profiles changed significantly in Col-0 upon foliar Hpa infection, and this was accompanied by a compositional shift in the root microbiome that was significantly different from microbial shifts occurring on roots of Hpa-infected coumarin-deficient mutants. Our data further show that the Hpa-induced SBL primes Col-0 plants growing in SBL-conditioned soil for salicylic acid (SA)-dependent defenses. The SA-signaling mutants sid2 and npr1 were unresponsive to the Hpa-induced SBL, suggesting that the protective effect of the Hpa-induced shift in the root microbiome results from an induced systemic resistance that requires SA-signaling in the plant.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oomicetos , Peronospora , Proteínas de Arabidopsis/genética , Ácido Salicílico/farmacologia , Arabidopsis/metabolismo , Cumarínicos/farmacologia , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas
12.
J Exp Bot ; 73(2): 584-595, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34131708

RESUMO

Volatile compounds (VCs) of Trichoderma fungi trigger induced systemic resistance (ISR) in Arabidopsis that is effective against a broad spectrum of pathogens. The root-specific transcription factor MYB72 is an early regulator of ISR and also controls the activation of iron-deficiency responses. Nitric oxide (NO) is involved in the regulation of MYB72-dependent iron-deficiency responses in Arabidopsis roots, but the role of NO in the regulation of MYB72 and ISR by Trichoderma VCs remains unexplored. Using in vitro bioassays, we applied Trichoderma VCs to Arabidopsis seedlings. Plant perception of Trichoderma VCs triggered a burst of NO in Arabidopsis roots. By suppressing this burst using an NO scavenger, we show the involvement of NO in Trichoderma VCs-mediated regulation of MYB72 expression. Using an NO scavenger and the Arabidopsis lines myb72 and nia1nia2 in in planta bioassays, we demonstrate that NO signalling is required in the roots for activation of Trichoderma VCs-mediated ISR against the leaf pathogen Botrytis cinerea. Analysis of the defence-related genes PR1 and PDF1.2 points to the involvement of root NO in priming leaves for enhanced defence. Our results support a key role of root NO signalling in the regulation of MYB72 expression during the activation of ISR by Trichoderma VCs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Trichoderma , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Óxido Nítrico , Doenças das Plantas , Raízes de Plantas/metabolismo , Trichoderma/metabolismo
14.
Nat Commun ; 12(1): 3829, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158504

RESUMO

While beneficial plant-microbe interactions are common in nature, direct evidence for the evolution of bacterial mutualism is scarce. Here we use experimental evolution to causally show that initially plant-antagonistic Pseudomonas protegens bacteria evolve into mutualists in the rhizosphere of Arabidopsis thaliana within six plant growth cycles (6 months). This evolutionary transition is accompanied with increased mutualist fitness via two mechanisms: (i) improved competitiveness for root exudates and (ii) enhanced tolerance to the plant-secreted antimicrobial scopoletin whose production is regulated by transcription factor MYB72. Crucially, these mutualistic adaptations are coupled with reduced phytotoxicity, enhanced transcription of MYB72 in roots, and a positive effect on plant growth. Genetically, mutualism is associated with diverse mutations in the GacS/GacA two-component regulator system, which confers high fitness benefits only in the presence of plants. Together, our results show that rhizosphere bacteria can rapidly evolve along the parasitism-mutualism continuum at an agriculturally relevant evolutionary timescale.


Assuntos
Arabidopsis/genética , Raízes de Plantas/genética , Pseudomonas/genética , Rizosfera , Simbiose/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Aptidão Genética , Interações Hospedeiro-Patógeno/genética , Mutação , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Pseudomonas/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
mBio ; 12(3): e0092721, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34101491

RESUMO

Beneficial plant root-associated microorganisms carry out a range of functions that are essential for plant performance. Establishment of a bacterium on plant roots, however, requires overcoming several challenges, including competition with neighboring microorganisms and host immunity. Forward and reverse genetics have led to the identification of mechanisms that are used by beneficial microorganisms to overcome these challenges, such as the production of iron-chelating compounds, the formation of strong biofilms, or the concealment of characteristic microbial molecular patterns that trigger the host immune system. However, how such mechanisms arose from an evolutionary perspective is much less understood. To study bacterial adaptation in the rhizosphere, we employed experimental evolution to track the physiological and genetic dynamics of root-dwelling Pseudomonas protegens in the Arabidopsis thaliana rhizosphere under axenic conditions. This simplified binary one plant/one bacterium system allows for the amplification of key adaptive mechanisms for bacterial rhizosphere colonization. We identified 35 mutations, including single-nucleotide polymorphisms, insertions, and deletions, distributed over 28 genes. We found that mutations in genes encoding global regulators and in genes for siderophore production, cell surface decoration, attachment, and motility accumulated in parallel, underlining the finding that bacterial adaptation to the rhizosphere follows multiple strategies. Notably, we observed that motility increased in parallel across multiple independent evolutionary lines. All together, these results underscore the strength of experimental evolution in identifying key genes, pathways, and processes for bacterial rhizosphere colonization and a methodology for the development of elite beneficial microorganisms with enhanced root-colonizing capacities that can support sustainable agriculture in the future. IMPORTANCE Beneficial root-associated microorganisms carry out many functions that are essential for plant performance. Establishment of a bacterium on plant roots, however, requires overcoming many challenges. Previously, diverse mechanisms that are used by beneficial microorganisms to overcome these challenges were identified. However, how such mechanisms have developed from an evolutionary perspective is much less understood. Here, we employed experimental evolution to track the evolutionary dynamics of a root-dwelling pseudomonad on the root of Arabidopsis. We found that mutations in global regulators, as well as in genes for siderophore production, cell surface decoration, attachment, and motility, accumulate in parallel, emphasizing these strategies for bacterial adaptation to the rhizosphere. We identified 35 mutations distributed over 28 genes. All together, our results demonstrate the power of experimental evolution in identifying key pathways for rhizosphere colonization and a methodology for the development of elite beneficial microorganisms that can support sustainable agriculture.


Assuntos
Arabidopsis/microbiologia , Evolução Molecular Direcionada/métodos , Genes Bacterianos , Pseudomonas/genética , Rizosfera , Genoma Bacteriano , Mutação , Raízes de Plantas/microbiologia , Microbiologia do Solo
16.
Planta ; 253(5): 102, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33856567

RESUMO

MAIN CONCLUSION: Overexpression of pathogen-induced cysteine-rich transmembrane proteins (PCMs) in Arabidopsis thaliana enhances resistance against biotrophic pathogens and stimulates hypocotyl growth, suggesting a potential role for PCMs in connecting both biological processes. Plants possess a sophisticated immune system to protect themselves against pathogen attack. The defense hormone salicylic acid (SA) is an important player in the plant immune gene regulatory network. Using RNA-seq time series data of Arabidopsis thaliana leaves treated with SA, we identified a largely uncharacterized SA-responsive gene family of eight members that are all activated in response to various pathogens or their immune elicitors and encode small proteins with cysteine-rich transmembrane domains. Based on their nucleotide similarity and chromosomal position, the designated Pathogen-induced Cysteine-rich transMembrane protein (PCM) genes were subdivided into three subgroups consisting of PCM1-3 (subgroup I), PCM4-6 (subgroup II), and PCM7-8 (subgroup III). Of the PCM genes, only PCM4 (also known as PCC1) has previously been implicated in plant immunity. Transient expression assays in Nicotiana benthamiana indicated that most PCM proteins localize to the plasma membrane. Ectopic overexpression of the PCMs in Arabidopsis thaliana resulted in all eight cases in enhanced resistance against the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. Additionally, overexpression of PCM subgroup I genes conferred enhanced resistance to the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato DC3000. The PCM-overexpression lines were found to be also affected in the expression of genes related to light signaling and development, and accordingly, PCM-overexpressing seedlings displayed elongated hypocotyl growth. These results point to a function of PCMs in both disease resistance and photomorphogenesis, connecting both biological processes, possibly via effects on membrane structure or activity of interacting proteins at the plasma membrane.


Assuntos
Proteínas de Arabidopsis , Resistência à Doença , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cisteína , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Pseudomonas syringae/metabolismo , Ácido Salicílico
17.
Cell Host Microbe ; 29(4): 548-550, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33857418

RESUMO

Bacterial flagellin is a potent host immune activator. Parys et al. (2021) and Colaianni et al. (2021) dissected effects of flagellin epitope variants on host immune detection and bacterial motility. They report in this issue of Cell Host & Microbe that Arabidopsis-associated bacterial microbiota differentially evolved flg22 variants that allow tunability between motility and defense activation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/imunologia , Epitopos , Flagelina/genética , Imunidade Vegetal/genética
18.
Microorganisms ; 9(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799825

RESUMO

Pseudomonas simiae WCS417 is a root-colonizing bacterium with well-established plant-beneficial effects. Upon colonization of Arabidopsis roots, WCS417 evades local root immune responses while triggering an induced systemic resistance (ISR) in the leaves. The early onset of ISR in roots shows similarities with the iron deficiency response, as both responses are associated with the production and secretion of coumarins. Coumarins can mobilize iron from the soil environment and have a selective antimicrobial activity that impacts microbiome assembly in the rhizosphere. Being highly coumarin-tolerant, WCS417 induces the secretion of these phenolic compounds, likely to improve its own niche establishment, while providing growth and immunity benefits for the host in return. To investigate the possible signaling function of coumarins in the mutualistic Arabidopsis-WCS417 interaction, we analyzed the transcriptome of WCS417 growing in root exudates of coumarin-producing Arabidopsis Col-0 and the coumarin-biosynthesis mutant f6'h1. We found that coumarins in F6'H1-dependent root exudates significantly affected the expression of 439 bacterial genes (8% of the bacterial genome). Of those, genes with functions related to transport and metabolism of carbohydrates, amino acids, and nucleotides were induced, whereas genes with functions related to cell motility, the bacterial mobilome, and energy production and conversion were repressed. Strikingly, most genes related to flagellar biosynthesis were down-regulated by F6'H1-dependent root exudates and we found that application of selected coumarins reduces bacterial motility. These findings suggest that coumarins' function in the rhizosphere as semiochemicals in the communication between the roots and WCS417. Collectively, our results provide important novel leads for future functional analysis of molecular processes in the establishment of plant-mutualist interactions.

19.
Plant Mol Biol ; 106(4-5): 319-334, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33825084

RESUMO

KEY MESSAGE: Overexpression of genes involved in coumarin production and secretion can mitigate mycorrhizal incompatibility in nonhost Arabidopsis plants. The coumarin scopoletin, in particular, stimulates pre-penetration development and metabolism in mycorrhizal fungi. Although most plants can benefit from mutualistic associations with arbuscular mycorrhizal (AM) fungi, nonhost plant species such as the model Arabidopsis thaliana have acquired incompatibility. The transcriptional response of Arabidopsis to colonization by host-supported AM fungi switches from initial AM recognition to defense activation and plant growth antagonism. However, detailed functional information on incompatibility in nonhost-AM fungus interactions is largely missing. We studied interactions between host-sustained AM fungal networks of Rhizophagus irregularis and 18 Arabidopsis genotypes affected in nonhost penetration resistance, coumarin production and secretion, and defense (salicylic acid, jasmonic acid, and ethylene) and growth hormones (auxin, brassinosteroid, cytokinin, and gibberellin). We demonstrated that root-secreted coumarins can mitigate incompatibility by stimulating fungal metabolism and promoting initial steps of AM colonization. Moreover, we provide evidence that major molecular defenses in Arabidopsis do not operate as primary mechanisms of AM incompatibility nor of growth antagonism. Our study reveals that, although incompatible, nonhost plants can harbor hidden tools that promote initial steps of AM colonization. Moreover, it uncovered the coumarin scopoletin as a novel signal in the pre-penetration dialogue, with possible implications for the chemical communication in plant-mycorrhizal fungi associations.


Assuntos
Arabidopsis/microbiologia , Fungos/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Escopoletina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Genes de Plantas , Genótipo , Interações entre Hospedeiro e Microrganismos/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Transdução de Sinais
20.
Trends Plant Sci ; 26(7): 685-691, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33531282

RESUMO

To be protected from biological threats, plants have evolved an immune system comprising constitutive and inducible defenses. For example, upon perception of certain stimuli, plants can develop a conditioned state of enhanced defensive capacity against upcoming pathogens and pests, resulting in a phenotype called 'induced resistance' (IR). To tackle the confusing lexicon currently used in the IR field, we propose a widely applicable code of practice concerning the terminology and description of IR phenotypes using two main phenotypical aspects: local versus systemic resistance, and direct versus primed defense responses. Our general framework aims to improve uniformity and consistency in future scientific communication, which should help to avoid further misinterpretations and facilitate the accessibility and impact of this research field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA