RESUMO
Perfluoroalkyl substances (PFAS) are common environmental pollutants, but their toxicity framework remains elusive. This research focused on ten PFAS, evaluating their impacts on two ecotoxicologically relevant model organisms from distinct trophic levels: the crustacean Daphnia magna and the unicellular green alga Raphidocelis subcapitata. The results showed a greater sensitivity of R. subcapitata compared to D. magna. However, a 10-day follow-up to the 48 h immobilisation test in D. magna showed delayed mortality, underlining the limitations of relying on EC50 s from standard acute toxicity tests. Among the compounds scrutinized, Perfluorodecanoic acid (PFDA) was the most toxic to R. subcapitata, succeeded by Perfluorooctane sulfonate (PFOS), Perfluorobutanoic acid (PFBA), and Perfluorononanoic acid (PFNA), with the latter being the only one to show an algicidal effect. In the same species, assessment of binary mixtures of the compounds that demonstrated high toxicity in the single evaluation revealed either additive or antagonistic interactions. Remarkably, with an EC50 of 31 mg L-1, the short-chain compound PFBA, tested individually, exhibited toxicity levels akin to the notorious long-chain PFOS, and its harm to freshwater ecosystems cannot be ruled out. Despite mounting toxicological evidence and escalating environmental concentrations, PFBA has received little scientific attention and regulatory stewardship. It is strongly advisable that regulators re-evaluate its use to mitigate potential risks to the environmental and human health.
Assuntos
Ácidos Alcanossulfônicos , Daphnia , Fluorocarbonos , Água Doce , Poluentes Químicos da Água , Fluorocarbonos/toxicidade , Daphnia/efeitos dos fármacos , Animais , Poluentes Químicos da Água/toxicidade , Ácidos Alcanossulfônicos/toxicidade , Ecossistema , Ácidos Decanoicos/toxicidade , Ácidos Graxos , Testes de Toxicidade , Ácidos SulfônicosRESUMO
In the context of increasing environmental contamination, our study employed fish as bioindicators, focusing on non-invasive cortisol measurements in scales and fins in response to severe PFAS pollution in the Veneto area of Italy. Our preliminary findings showed species-specific stress responses, as observed in Squalius cephalus and Padogobius bonelli, suggesting the need for broader biomonitoring to capture the complex impact of environmental stressors on aquatic organisms. Moreover, due to the unusual characteristics of the rivers selected for the biomonitoring activity, a possible link between PFAS exposure and cortisol levels in S. cephalus demonstrates the method's potential.
Assuntos
Monitoramento Ambiental , Peixes , Hidrocortisona , Rios , Estresse Fisiológico , Poluentes Químicos da Água , Animais , Hidrocortisona/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Rios/química , Itália , Peixes/metabolismo , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Especificidade da Espécie , Monitoramento BiológicoRESUMO
Among veterinary antibiotics, flumequine (FLU) is still widely used in aquaculture due to its efficacy and cost-effectiveness. Although it was synthesized more than 50 years ago, a complete toxicological framework of possible side effects on non-target species is still far from being achieved. The aim of this research was to investigate the FLU molecular mechanisms in Daphnia magna, a planktonic crustacean recognized as a model species for ecotoxicological studies. Two different FLU concentrations (2.0 mg L-1 and 0.2 mg L-1) were assayed in general accordance with OECD Guideline 211, with some proper adaptations. Exposure to FLU (2.0 mg L-1) caused alteration of phenotypic traits, with a significant reduction in survival rate, body growth, and reproduction. The lower concentration (0.2 mg L-1) did not affect phenotypic traits but modulated gene expression, an effect which was even more evident under the higher exposure level. Indeed, in daphnids exposed to 2.0 mg L-1 FLU, several genes related with growth, development, structural components, and antioxidant response were significantly modulated. To the best of our knowledge, this is the first work showing the impact of FLU on the transcriptome of D. magna.
Assuntos
Transcriptoma , Poluentes Químicos da Água , Animais , Daphnia/genética , Poluentes Químicos da Água/toxicidade , ReproduçãoRESUMO
This work aimed to evaluate the effects of zinc (Zn) relating to cadmium (Cd)-induced toxicity and the role played by MTF-1. This transcription factor regulates the expression of genes encoding metallothioneins (MTs), some Zn transporters and the heavy chain of γ-glutamylcysteine synthetase. For this reason, two cell lines of mouse fibroblasts were used: a wild-type strain and a knockout strain to study the effects. Cells were exposed to complete medium containing: (1) 50 µM ZnSO4 (Zn), (2) 1 µM CdCl2 (Cd 1), (3) 2 µM CdCl2 (Cd 2), (4) 50 µM ZnSO4 + 1 µM CdCl2 (ZnCd 1) and (5) 50 µM ZnSO4 + 2 µM CdCl2 (ZnCd 2) for 4, 18 and 24 h. Following exposure, cell viability, the intracellular content of metals, glutathione (GSH) and MT and the gene expression of the two isoforms of MT was evaluated. The results obtained suggest that a lower Cd content in the co-treatments is responsible for the protection offered by Zn due to the probable competition for a common transporter. Furthermore, Zn determines an increase in GSH in co-treatments compared to treatments with Cd alone. Finally, the MTF-1 factor is essential for the expression of MT-1 but not of MT-2 nor probably for the heavy chain of γ-glutamylcysteine synthetase.