Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672888

RESUMO

Bovine whey cheese (WC) is a product from southern European countries that presents some challenges: its production process involves high energy inputs; the yield is low; and WC has a short shelf life. The application of ultrafiltration (UF) to bovine whey before manufacture of WC and the employment of protective cultures can reduce these disadvantages. The objective of this research was the production of whey cheeses using ultrafiltrated bovine cheese whey with added probiotics or probiotics plus protective cultures. Three types of WC were produced: control CW without any addition (C); CW with the addition of the probiotic Lactobacillus acidophilus (LA5); and CW with the addition of Lactobacillus acidophilus plus a protective culture containing Lacticaseibacillus paracasei and Lacticaseibacillus rhamnosus (LA5FQ4). The WCs were stored under refrigerated conditions for 28 days. The products with added cultures presented lower pH values and higher titratable acidities when compared to the control. Sample LA5 presented the lowest pH and the highest titratable acidity, while LA5FQ4 presented intermediate values. Slight differences were observed between products regarding color parameters, chiefly resulting from storage time. The samples with added cultures were firmer when compared to the control, with LA5 cheeses showing the highest values at the end of the storage. Lactic acid bacteria (LAB) counts were on the order of log 8-9 CFU/g for the products with added cultures. Lower levels of yeasts and molds were detected on the sample with the protective culture (LA5FQ4), so that by the end of storage they presented counts one log cycle lower than C and LA5. Hence, the beneficial impact of the protective culture on the shelf life of the product is evident. Regarding sensory evaluation, LA5FQ4 cheeses obtained the highest scores for all parameters evaluated. It can be concluded that the use of UF associated with the addition of protective cultures can be very useful to reduce the energy consumption of the manufacturing process, to prolong the shelf life of WC and to improve its sensory properties.

2.
Foods ; 13(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38472787

RESUMO

Sheep's second cheese whey (SCW), the by-product resulting from whey cheese production, was used as a component of cheese coatings containing oregano (Origanum compactum) and clary sage (Salvia sclarea) essential oils (EOs). SCW powder was obtained by the ultrafiltration/diafiltration of SCW followed by reverse osmosis and freeze drying. The coatings were produced with a mixture of SCW and whey protein isolate (WPI) using glycerol as plasticizer. Model cheeses were produced with cow´s milk and those containing SCW:WPI coatings; those with and without EOs were compared to controls without coating and with a commercial coating containing natamycin. At the end of ripening (28 days), the cheeses containing EOs presented higher water activity (ca. 0.930) and moisture content, as well as lower titratable acidity. Concerning color parameters, significant differences were also observed between products and as a result of ripening time. However, the use of SCW:WPI coatings did not significantly influence the color parameters at the end of ripening. Regarding texture parameters, the cheeses containing SCW:WPI coatings presented significantly lower values for hardness, chewiness, and gumminess. Significant differences were also observed for all microbial groups evaluated either between products and as a result of ripening time. In all cases, lactobacilli and lactococci counts surpassed log 7-8 CFU/g, while the counts of yeasts and molds increased steadily from ca. log 3 to log 6 CFU/g. The lowest counts of yeasts and molds were observed in the samples containing natamycin, but nonsignificant differences between products were observed. In conclusion, SCW:WPI cheese coatings can successfully substitute commercial coatings with the advantage of being edible packaging materials manufactured with by-products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA