Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671709

RESUMO

Secondary infections cause sepsis that lead to patient disability or death. Contact of macrophages with bacterial components (such as lipopolysaccharide-LPS) activates the intracellular signaling pathway downstream of Toll-like receptors (TLR), which initiate an immune proinflammatory response. However, the expression of nuclear factor-kappa B (NF-κB)-dependent proinflammatory cytokines significantly decreases after single high or multiple LPS stimulations. Knowing that poly(ADP-ribose) polymerase-1 (PARP1) serves as a cofactor of NF-κB, we aimed to verify a hypothesis of the possible contribution of PARP1 to the development of LPS-induced tolerance in human macrophages. Using TNF-α mRNA expression as a readout, we demonstrate that PARP1 interaction with the TNF-α promoter, controls macrophage immunoparalysis. We confirm that PARP1 is extruded from the gene promoter, whereas cell pretreatment with Olaparib maintains macrophage responsiveness to another LPS treatment. Furthermore, cell pretreatment with proteasome inhibitor MG132 completely abrogates the effect of Olaparib, suggesting that PARP1 acts with NF-κB in the same regulatory pathway, which controls pro-inflammatory cytokine transcription. Mechanistically, PARP1 trapping allows for the re-rebinding of p65 to the TNF-α promoter in LPS-stimulated cells. In conclusion, PARP traps prevent PARP1 extrusion from the TNF-α promoter upon macrophage stimulation, thereby maintaining chromatin responsiveness of TLR activation, allowing for the re-binding of p65 and TNF-α transcription.

2.
Cancers (Basel) ; 12(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033115

RESUMO

Cancer malignancy is usually characterized by unlimited self-renewal. In some types of advanced tumors that are rapidly dividing, gene expression profiles depict elevations in pro-proliferative genes accompanied by coordinately elevated transcription of factors responsible for removal of DNA lesions. In our studies, fast proliferating breast cancer cell lines (MDA-MB-231 and MCF7), BRG1, a component of the SWI/SNF complex, emerges as an activator of functionally-linked genes responsible for activities such as mitotic cell divisions and DNA repair. Products of at least some of them are considerably overrepresented in breast cancer cells and BRG1 facilitates growth of MCF7 and MDA-MB-231 cell lines. BRG1 occurs at the promoters of genes such as CDK4, LIG1, and NEIL3, which are transcriptionally controlled by cell cycle progression and highly acetylated by EP300 in proliferating cells. As previously documented, in dividing cells BRG1 directly activates gene transcription by evicting EP300 modified nucleosomes from the promoters and, thereby, relaxing chromatin. However, the deficiency of BRG1 or EP300 activity for 48 h leads to cell growth arrest and to chromatin compaction, but also to the assembly of RB1/HDAC1/EZH2 complexes at the studied cell cycle-dependent gene promoters. Epigenetic changes include histone deacetylation and accumulation of H3K27me trimethylation, both known to repress transcription. Cell cycle arrest in G1 by inhibition of CDK4/6 phenocopies the effect of the long-term BRG1 inhibition on the chromatin structure. These results suggest that BRG1 may control gene transcription also by promoting expression of genes responsible for cell cycle progression in the studied breast cancer cells. In the current study, we show that BRG1 binding occurs at the promoters of functionally linked genes in proliferating breast cancer cells, revealing a new mechanism by which BRG1 defines gene transcription.

3.
Biochim Biophys Acta Gene Regul Mech ; 1862(2): 198-208, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30414852

RESUMO

Differentiation of human macrophages predisposes these cells to numerous tasks, i.e. killing invading pathogens, and this entails the need for enhanced intracellular defences against stress, including conditions that may increase DNA damage. Our study shows that expression of DNA repair enzymes, such as PARP1, BRCA1 and XRCC1, are activated during macrophage development by the SWI/SNF chromatin remodelling complex, which serves as a histone acetylation sensor. It recognises and displaces epigenetically marked nucleosomes, thereby enabling transcription. Acetylation is controlled both in monocytes and macrophages by the co-operation of EP300 and HDAC1 activities. Differentiation modulates the activities of individual components of EP300-HDAC1-SWI/SNF functional unit and entails recruitment of PBAF to gene promoters. In monocytes, histone-deacetylated promoters of repressed PARP1, BRCA1 and XRCC1 respond only to HDAC inhibition, with an opening of the chromatin structure by BRM, whereas in macrophages both EP300 and HDAC1 contribute to the fine-tuning of nucleosomal acetylation, with HDAC1 remaining active and the balance of EP300 and HDAC1 activities controlling nucleosome eviction by BRG1-containing SWI/SNF. Since EP300-HDAC1-SWI/SNF operates at the level of gene promoters characterized simultaneously by the presence of E2F binding site(s) and CpG island(s), this allows cells to adjust PARP1, BRCA1 and XRCC1 transcription to the differentiation mode and to restart cell cycle progression. Thus, mutual interdependence between acetylase and deacetylase activities defines the acetylation-dependent code for regulation of histone density and gene transcription by SWI/SNF, notably on gene promoters of DNA repair enzymes.


Assuntos
Diferenciação Celular , Montagem e Desmontagem da Cromatina , Enzimas Reparadoras do DNA/genética , Macrófagos/citologia , Acetilação , Proteína p300 Associada a E1A , Histona Desacetilase 1 , Humanos , Nucleossomos/metabolismo , Transcrição Gênica
4.
Redox Biol ; 18: 1-5, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29886395

RESUMO

Although electrophiles are considered as detrimental to cells, accumulating recent evidence indicates that proliferating non-cancerous and particularly cancerous cells utilize these agents for pro-survival and cell cycle promoting signaling. Hence, the redox shift to mild oxidant release must be balanced by multiple defense mechanisms. Our latest findings demonstrate that cell cycle progression, which dictates oxidant level in stress-free conditions, determines PARP1 transcription. Growth modulating factors regulate CDK4/6-RBs-E2Fs axis. In cells arrested in G1 and G0, RB1-E2F1 and RBL2-E2F4 dimers recruit chromatin remodelers such as HDAC1, SWI/SNF and PRC2 to condense chromatin and turn off transcription. Release of retinoblastoma-based repressive complexes from E2F-dependent gene promoters in response to cell transition to S phase enables transcription of PARP1. This enzyme contributes to repair of oxidative DNA damage by supporting several strand break repair pathways and nucleotide or base excision repair pathways, as well as acting as a co-activator of transcription factors such as NRF2 and HIF1a, which control expression of antioxidant enzymes involved in removal of electrophiles and secondary metabolites. Furthermore, PARP1 is indispensible for transcription of the pro-survival kinases MAP2K6, ERK1/2 and AKT1, and for maintaining MAPK activity by suppressing transcription of the MAPK inhibitor, MPK1. In summary, cell cycle controlled PARP1 transcription helps cells to adapt to a pro-oxidant redox shift.


Assuntos
Ciclo Celular , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1/genética , Regiões Promotoras Genéticas , Ativação Transcricional , Animais , Proliferação de Células , Reparo do DNA , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Transdução de Sinais
5.
Redox Biol ; 15: 316-326, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29306194

RESUMO

Hallmarks of cancer cells include uncontrolled growth and rapid proliferation; thus, cyclin-dependent kinases are a therapeutic target for cancer treatment. Treating non-small lung cancer cells with sublethal concentrations of the CDK4/6 inhibitors, ribociclib (LEE011) and palbociclib (PD0332991), which are approved by the FDA for anticancer therapies, caused cell cycle arrest in the G1 phase and suppression of poly(ADP-ribose) polymerase 1 (PARP1) transcription by inducing recruitment of the RB1-E2F1-HDAC1-EZH2 repressive complex to the PARP1 promoter. Downregulation of PARP1 made cancer cells vulnerable to death triggered by the anticancer drugs (WP631 and etoposide) and H2O2. All agents brought about redox imbalance and DNA strand breaks. The lack of PARP1 and poly(ADP-ribosyl)ation impaired the 8-oxoguanine glycosylase (OGG1)-dependent base excision DNA repair pathway, which is critical for maintaining the viability of cells treated with CDK4/6 inhibitors during oxidative stress. Upon G1 arrest of PARP1 overexpressing cells, OGG1 formed an immunoprecipitable complex with PARP1. Similar to cells with downregulated PARP1 expression, inhibition of PARP1 or OGG1 in PARP1 overexpressing cells resulted in DNA damage and decreased viability. Thus, PARP1 and OGG1 act in the same regulatory pathway, and PARP1 activity is required for OGG1-mediated repair of oxidative DNA damage in G1-arrested cells. In conclusion, the action of CDK4/6 inhibitors is not limited to the inhibition of cell growth. CDK4/6 inhibitors also lead to accumulation of DNA damage by repressing PARP1 in oxidatively stressed cells. Thus, CDK4/6 inhibitors sensitize G1-arrested cells to anticancer drugs, since these cells require PARP1-OGG1 functional interaction for cell survival.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , DNA Glicosilases/genética , Reparo do DNA/genética , Neoplasias Pulmonares/tratamento farmacológico , Poli(ADP-Ribose) Polimerase-1/genética , Aminopiridinas/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/genética , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Daunorrubicina/análogos & derivados , Daunorrubicina/farmacologia , Etoposídeo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Piperazinas/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Purinas/farmacologia , Piridinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA