Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 168926, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38029985

RESUMO

Arable land use and the associated application of agrochemicals can affect local freshwater communities with consequences for the entire ecosystem. For instance, the structure and function of leaf-associated microbial communities can be affected by pesticides, such as fungicides. Additionally, the leaf species on which these microbial communities grow reflects another environmental filter for community structure. These factors and their interaction may jointly modify leaves' nutritional quality for higher trophic levels. To test this assumption, we studied the structure of leaf-associated microbial communities with distinct exposure histories (pristine [P] vs vineyard run off [V]) colonising two leaf species (black alder, European beech, and a mixture thereof). By offering these differently colonised leaves as food to males and females of the leaf-shredding amphipod Gammarus fossarum (Crustacea; Amphipoda) we assessed for potential bottom-up effects. The growth rate, feeding rate, faeces production and neutral lipid fatty acid profile of the amphipod served as response variable in a 2 × 3 × 2-factorial test design over 21d. A clear separation of community history (P vs V), leaf species and an interaction between the two factors was observed for the leaf-associated aquatic hyphomycete (i.e., fungal) community. Sensitive fungal species were reduced by up to 70 % in the V- compared to P-community. Gammarus' growth rate, feeding rate and faeces production were affected by the factor leaf species. Growth was negatively affected when Gammarus were fed with beech leaves only, whereas the impact of alder and the mixture of both leaf species was sex-specific. Overall, this study highlights that leaf species identity had a more substantial impact on gammarids relative to the microbial community itself. Furthermore, the sex-specificity of the observed effects (excluding fatty acid profile, which was only measured for male) questions the procedure of earlier studies, that is using either only one sex or not being able to differentiate between males and females. However, these results need additional verification to support a reliable extrapolation.


Assuntos
Anfípodes , Fungicidas Industriais , Microbiota , Poluentes Químicos da Água , Animais , Anfípodes/fisiologia , Ecossistema , Ácidos Graxos , Água Doce , Fungicidas Industriais/toxicidade , Folhas de Planta , Poluentes Químicos da Água/toxicidade
2.
Environ Toxicol Chem ; 42(6): 1346-1358, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946335

RESUMO

Anthropogenic stressors can affect the emergence of aquatic insects. These insects link aquatic and adjacent terrestrial food webs, serving as high-quality subsidy to terrestrial consumers, such as spiders. While previous studies have demonstrated that changes in the emergence biomass and timing may propagate across ecosystem boundaries, the physiological consequences of altered subsidy quality for spiders are largely unknown. We used a model food chain to study the potential effects of subsidy quality: Tetragnatha spp. were exclusively fed with emergent Chironomus riparius cultured in the absence or presence of either copper (Cu), Bacillus thuringiensis var. israelensis (Bti), or a mixture of synthetic pesticides paired with two basal resources (Spirulina vs. TetraMin®) of differing quality in terms of fatty acid (FA) composition. Basal resources shaped the FA profile of chironomids, whereas their effect on the FA profile of spiders decreased, presumably due to the capacity of both chironomids and spiders to modify (dietary) FA. In contrast, aquatic contaminants had negligible effects on prey FA profiles but reduced the content of physiologically important polyunsaturated FAs, such as 20:4n-6 (arachidonic acid) and 20:5n-3 (eicosapentaenoic acid), in spiders by approximately 30% in Cu and Bti treatments. This may have contributed to the statistically significant decline (40%-50%) in spider growth. The observed effects in spiders are likely related to prey nutritional quality because biomass consumption by spiders was, because of our experimental design, constant. Analyses of additional parameters that describe the nutritional quality for consumers such as proteins, carbohydrates, and the retention of contaminants may shed further light on the underlying mechanisms. Our results highlight that aquatic contaminants can affect the physiology of riparian spiders, likely by altering subsidy quality, with potential implications for terrestrial food webs. Environ Toxicol Chem 2023;42:1346-1358. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ecossistema , Aranhas , Animais , Aranhas/química , Rios/química , Cadeia Alimentar , Insetos
3.
Environ Sci Technol ; 57(2): 951-962, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36599118

RESUMO

Aquatic micropollutants can be transported to terrestrial systems and their consumers by emergent aquatic insects. However, micropollutants, such as metals, may also affect the flux of physiologically important polyunsaturated fatty acids (PUFAs). As certain PUFAs have been linked to physiological fitness and breeding success of terrestrial consumers, reduced fluxes from aquatic systems could affect terrestrial populations and food webs. We chronically exposed larvae of the aquatic insect Chironomus riparius to a range of environmentally relevant sediment contents of cadmium (Cd) or copper (Cu) in a 28-day microcosm study. Since elevated water temperatures can enhance metals' toxic effects, we used two temperature regimes, control and periodically elevated temperatures (heat waves) reflecting an aspect of climate change. Cd and Cu significantly reduced adult emergence by up to 95% and 45%, respectively, while elevated temperatures had negligible effects. Both metal contents were strongly reduced (∼90%) during metamorphosis. Furthermore, the chironomid FA profile was significantly altered during metamorphosis with the factors sex and metal exposure being relevant predictors. Consequently, fluxes of physiologically important PUFAs by emergent adults were reduced by up to ∼80%. Our results suggest that considering fluxes of physiologically important compounds, such as PUFAs, by emergent aquatic insects is important to understand the implications of aquatic micropollutants on aquatic-terrestrial meta-ecosystems.


Assuntos
Chironomidae , Cadeia Alimentar , Animais , Ecossistema , Ácidos Graxos , Cádmio , Metais/toxicidade , Insetos/fisiologia
4.
Environ Sci Technol ; 56(9): 5478-5488, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35441504

RESUMO

Emerging aquatic insects have the potential to retain aquatic contaminants after metamorphosis, potentially transporting them into adjacent terrestrial food webs. It is unknown whether this transfer is also relevant for current-use pesticides. We exposed larvae of the nonbiting midge, Chironomus riparius, to a sublethal pulse of a mixture of nine moderately polar fungicides and herbicides (logKow 2.5-4.7) at three field relevant treatment levels (1.2-2.5, 17.5-35.0, or 50.0-100.0 µg/L). We then assessed the pesticide bioaccumulation and bioamplification over the full aquatic-terrestrial life cycle of both sexes including the egg laying of adult females. By applying sensitive LC-MS/MS analysis to small sample volumes (∼5 mg, dry weight), we detected all pesticides in larvae from all treatment levels (2.8-1019 ng/g), five of the pesticides in the adults from the lowest treatment level and eight in the higher treatment levels (1.5-3615 ng/g). Retention of the pesticides through metamorphosis was not predictable based solely on pesticide lipophilicity. Sex-specific differences in adult insect pesticide concentrations were significant for five of the pesticides, with greater concentrations in females for four of them. Over the duration of the adults' lifespan, pesticide concentrations generally decreased in females while persisting in males. Our results suggest that a low to moderate daily dietary exposure to these pesticides may be possible for tree swallow nestlings and insectivorous bats.


Assuntos
Chironomidae , Praguicidas , Poluentes Químicos da Água , Animais , Cromatografia Líquida , Ecossistema , Feminino , Insetos , Larva , Masculino , Praguicidas/análise , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
5.
Curr Opin Insect Sci ; 50: 100885, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35144033

RESUMO

Metals and organic contaminants in aquatic systems affect the coupling of aquatic and terrestrial ecosystems through two pathways: contaminant-induced effects on insect emergence and emergence-induced contaminant transfer. Consequently, the impact of aquatic contaminants on terrestrial ecosystems can be driven by modifications in the quantity and quality of adult aquatic insects serving as prey or contaminants entering terrestrial food webs as part of the diet of terrestrial predators. Here, we provide an overview of recent advances in the field, separating metals from organic contaminants due to their differential propensity to bioaccumulate and thus their potential contribution to either of the two pathways. Finally, this review highlights the knowledge gap in the relative impact of these pathways on terrestrial insectivores.


Assuntos
Ecossistema , Insetos , Animais , Cadeia Alimentar , Metais
6.
Aquat Toxicol ; 232: 105762, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33561742

RESUMO

Antimicrobials, such as fungicides and antibiotics, pose a risk for microbial decomposers (i.e., bacteria and aquatic fungi) and invertebrate detritivores (i.e., shredders) that play a pivotal role in the ecosystem function of leaf litter breakdown. Although waterborne toxicity and diet-related effects (i.e., dietary exposure and microorganism-mediated alterations in food quality for shredders) of fungicides and antibiotics on decomposer-detritivore systems have been increasingly documented, their joint effect is unknown. We therefore assessed waterborne and dietary effects of an antimicrobial mixture consisting of the fungicide azoxystrobin (AZO) and the antibiotic ciprofloxacin (CIP) on microbial decomposers and the shredder Gammarus fossarum using a tiered approach. We compared effect sizes measured in the present study with model predictions (i.e., independent action) based on published data. During a 7-day feeding activity assay quantifying waterborne toxicity in G. fossarum, the leaf consumption of gammarids was reduced by ∼60 % compared to the control when subjected to the mixture at concentrations of each component causing a 20 % reduction in the same response variable when applied individually. Moreover, the selective feeding of gammarids during the food choice assay indicated alterations in food quality induced by the antimicrobial mixture. The food selection and, in addition, the decrease in microbial leaf decomposition is likely linked to changes in leaf-associated bacteria and fungi. During a long-term assay, energy processing, growth and energy reserves of gammarids were increased in presence of 15 and 500 µg/L of AZO and CIP, respectively, through the dietary pathway. These physiological responses were probably driven by CIP-induced alterations in the gut microbiome or immune system of gammarids. In general, model predictions matched observed effects caused by waterborne exposure on the leaf consumption, energy processing and growth of gammarids during short- and long-term assays, respectively. However, when complex horizontal (bacteria and aquatic fungi) and vertical (leaf-associated microorganisms and shredders) interactions were involved, model predictions partly over- or underestimated mixture effects. Therefore, the present study identifies uncertainties of mixture effect predictions for complex biological systems calling for studies targeting the underlying processes and mechanisms.

7.
Sci Rep ; 7(1): 16182, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170431

RESUMO

Systemic neonicotinoids are commonly used in forest pest management programs. Senescent leaves containing neonicotinoids may, however, fall from treated trees into nearby streams. There, leaf-shredding invertebrates are particularly exposed due to their diet (feeding on neonicotinoid-contaminated leaves) or collaterally via the water phase (leaching of a neonicotinoid from leaves) - a fact not considered during aquatic environmental risk assessment. To unravel the relevance of these pathways we used leaves from trees treated with the neonicotinoid thiacloprid to subject the amphipod shredder Gammarus fossarum for 21 days (n = 40) either to dietary, waterborne or a combined (dietary + waterborne) exposure. Dietary exposure caused - relative to the control - similar reductions in gammarids' leaf consumption (~35%) and lipid content (~20%) as observed for the waterborne exposure pathway (30 and 22%). The effect sizes observed under combined exposure suggested additivity of effects being largely predictable using the reference model "independent action". Since gammarids accumulated - independent of the exposure pathway - up to 280 ng thiacloprid/g, dietary exposure may also be relevant for predators which prey on Gammarus. Consequently, neglecting dietary exposure might underestimate the environmental risk systemic insecticides pose for ecosystem integrity calling for its consideration during the evaluation and registration of chemical stressors.


Assuntos
Anfípodes/metabolismo , Neonicotinoides/metabolismo , Folhas de Planta , Tiazinas/metabolismo , Animais , Peso Corporal , Ecossistema , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA