Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 87(10): 2499-2506, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39365948

RESUMO

The marine alkaloid erebusinone is a secondary metabolite isolated from the Antarctic sponge Isodictya erinacea. Initial biological assays have shown that erebusinone increases amphipod mortality, probably by inhibition of the biosynthesis of molting hormone (ecdysone). Herein, we report the first total synthesis of the proposed structure of erebusinone and a structural revision.


Assuntos
Alcaloides , Poríferos , Animais , Alcaloides/química , Alcaloides/farmacologia , Alcaloides/síntese química , Estrutura Molecular , Poríferos/química , Biologia Marinha , Regiões Antárticas , Muda/efeitos dos fármacos , Ecdisona/farmacologia , Anfípodes/efeitos dos fármacos
2.
J Nat Prod ; 87(10): 2507-2514, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39348710

RESUMO

Two novel pyrroloiminoquinone alkaloids, 6-chlorodamirone A and 6-bromodamirone A, have been identified for the first time from the marine sponge Latrunculia sp. (order: Poecilosclerida: family Latrunculiidae), sourced from Western Australia. Alongside these new compounds, seven previously known metabolites were also isolated. Despite being obtained in submilligram quantities, the structures of these natural products were successfully elucidated using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy. To confirm the structures of these newly discovered alkaloids, a semisynthetic approach was employed starting from the more abundant metabolite, damirone A, additionally, single crystal X-ray crystallography was used to validate our structural proposals. The semisynthetic studies suggest that the chlorinated alkaloids are likely formed through a nonenzymatic conjugate halide substitution reaction rather than an enzymatic process. This reactivity parallels that observed in related metabolites, such as the caulibugulones B and C. Furthermore, a biomimetic cascade reaction was attempted to synthesize the spirodienone moiety characteristic of the discorhabdin alkaloids, inspired by the nucleophilic substitution observed in the tricyclic damirone A system. Albeit unsuccessful, these findings provide valuable insight into the reactivity of halogenated pyrroloiminoquinones under various conditions.


Assuntos
Alcaloides , Poríferos , Pirroliminoquinonas , Poríferos/química , Alcaloides/química , Estrutura Molecular , Cristalografia por Raios X , Animais , Pirroliminoquinonas/química , Austrália Ocidental , Biologia Marinha , Halogenação , Ressonância Magnética Nuclear Biomolecular
3.
BMC Cancer ; 24(1): 203, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350880

RESUMO

BACKGROUND: Chemotherapy is included in treatment regimens for many solid cancers, but when administered as a single agent it is rarely curative. The addition of immune checkpoint therapy to standard chemotherapy regimens has improved response rates and increased survival in some cancers. However, most patients do not respond to treatment and immune checkpoint therapy can cause severe side effects. Therefore, there is a need for alternative immunomodulatory drugs that enhance chemotherapy. METHODS: We used gene expression data from cyclophosphamide (CY) responders and non-responders to identify existing clinically approved drugs that could phenocopy a chemosensitive tumor microenvironment (TME), and tested combination treatments in multiple murine cancer models. RESULTS: The vitamin A derivative tretinoin was the top predicted upstream regulator of response to CY. Tretinoin pre-treatment induced an inflammatory, interferon-associated TME, with increased infiltration of CD8 + T cells, sensitizing the tumor to subsequent chemotherapy. However, while combination treatment significantly improved survival and cure rate in a CD4+ and CD8+ T cell dependent manner in AB1-HA murine mesothelioma, this effect was model-selective, and could not be replicated using other cell lines. CONCLUSIONS: Despite the promising data in one model, the inability to validate the efficacy of combination treatment in multiple cancer models deprioritizes tretinoin/cyclophosphamide combination therapy for clinical translation.


Assuntos
Mesotelioma , Tretinoína , Humanos , Animais , Camundongos , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Ciclofosfamida , Linfócitos T CD8-Positivos , Terapia Combinada , Mesotelioma/tratamento farmacológico , Microambiente Tumoral
4.
Small ; 20(8): e2306334, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817372

RESUMO

While a multitude of studies have appeared touting the use of molecules as electronic components, the design of molecular switches is crucial for the next steps in molecular electronics. In this work, single-molecule devices incorporating spiropyrans, made using break junction techniques, are described. Linear spiropyrans with electrode-contacting groups linked by alkynyl spacers to both the indoline and chromenone moieties have previously provided very low conductance values, and removing the alkynyl spacer has resulted in a total loss of conductance. An orthogonal T-shaped approach to single-molecule junctions incorporating spiropyran moieties in which the conducting pathway lies orthogonal to the molecule backbone is described and characterized. This approach has provided singlemolecule conductance features with good correlation to molecular length. Additional higher conducting states are accessible using switching induced by UV light or protonation. Theoretical modeling demonstrates that upon (photo)chemical isomerization to the merocyanine, two cooperating phenomena increase conductance: release of steric hindrance allows the conductance pathway to become more planar (raising the mid-bandgap transmission) and a bound state introduces sharp interference near the Fermi level of the electrodes similarly responding to the change in state. This design step paves the way for future use of spiropyrans in single-molecule devices and electrosteric switches.

5.
Inorg Chem ; 62(31): 12283-12297, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37545356

RESUMO

To study the switching properties of photochromes, we undertook the synthesis and characterization of several ruthenium organometallic complexes of the type [Ru(Cp*)(dppe)(C≡C-SP)] or [Ru(CO)(dppe)(PPh3)Cl(CH═CH-SP)], where SP = spiropyran. The spectroscopic and electrochemical properties of the complexes were determined by careful cyclic voltammetric and spectroelectrochemical experiments. Whereas the mononuclear alkynyl ruthenium complexes undergo one-electron oxidations localized over the metal alkynyl moiety, the oxidation of the mononuclear vinyl ruthenium complexes is centered on the indoline moiety of the spiropyran. Through these studies, we demonstrate access to several stable redox states, in addition to switching states attained via acidochromism and/or photoisomerization.

6.
J Nat Prod ; 86(3): 550-556, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36897305

RESUMO

The lichen natural products pulvinamide, rhizocarpic acid, and epanorin have been synthesized and characterized spectroscopically and by X-ray crystallography. The syntheses, by ring-opening of pulvinic acid dilactone (PAD), may well be biomimetic, given the well-known occurrence of PAD in lichen. The enantiomers, ent-rhizocarpic acid and ent-epanorin, and corresponding carboxylic acids, norrhizocarpic acid and norepanorin, were similarly prepared. All compounds were assessed for growth inhibitory activity against selected bacteria, fungi, a protist, a mammalian tumor cell line, and normal cells. Rhizocarpic acid is weakly antibacterial (Bacillus subtilis MIC = 50 µg/mL) and possesses modest but selective antitumor activity (NS-1 murine myeloma MIC = 3.1 µg/mL) with >10-fold potency relative to its enantiomer (MIC = 50 µg/mL).


Assuntos
Líquens , Animais , Camundongos , Antibacterianos/química , Bactérias , Fungos , Líquens/química , Malonatos/metabolismo , Mamíferos , Testes de Sensibilidade Microbiana
7.
Dalton Trans ; 52(1): 185-200, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36477490

RESUMO

Multifunctional switches are crucial to the development of smart molecular materials and molecular-electronic applications. Here, we describe the synthesis, structure, and characterization of several spiropyrans functionalized with alkynyl-[Ru(dppe)2] moieties. Through electrochemical and spectroelectrochemical studies, we demonstrate access to several stable redox states, in addition to states accessed via acidochromism and photoisomerisation. Initial protonation was found to occur at the alkynyl functionality followed by acid-induced ring-opening of the spiropyran ligand to form the protonated merocyanine. The protonated merocyanine can be switched from the Z- to E-isomer by using ultraviolet light. The spiropyran was also shown to be an effective insulator for electronic communication across the molecular backbone.

8.
ACS Omega ; 7(23): 19080-19092, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35721899

RESUMO

Model chemistry involving the bisannulation of 2,3-dichloro-1,4-naphthoquinone with the ester enolate derived from ethyl o-nitrophenylacetic acid, which rapid assembled the ABCD ring system of a pentacyclic pyrroloacridine, has been applied to the attempted synthesis of the marine natural product alpkinidine. The reaction of ethyl o-nitrophenylacetic acid with 6,7-dichloro-2-methylisoquinoline-1,5,8(2H)-trione, required to extend the model strategy to alpkinidine, was unfruitful, giving only complex mixtures. Efforts to direct the regiochemistry of the key Michael substitution step using 6-bromo-2-methylisoquinoline-1,5,8(2H)-trione afforded an adduct sharing the complete carbon skeleton of alpkinidine, but this could not be elaborated to the natural product.

9.
ACS Omega ; 7(23): 19093-19105, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35722017

RESUMO

Strategies toward the total synthesis of the marine pyrroloacridine alkaloid alpkinidine have been explored, focusing on linking quinonoid CE ring-system synthons with the A ring, followed by condensation to form the B and D rings. The key Michael addition of the ester enolate derived from ethyl o-nitrophenylacetate to 2-methylisoquinoline-1,5,8(2H)-trione proceeded with the wrong regiochemistry. This issue was addressed by incorporating the D-ring nitrogen at an earlier stage, affording advanced intermediates possessing the complete carbon skeleton of alpkinidine. However, attempts to close the D and B rings were unsuccessful. The novel isoquinolinetriones reported here, and the general strategy of connecting CE- and A-ring synthons through Michael additions, may be useful in the synthesis of other pyrrolo- and pyridoacridines, in particular the anticancer lead neoamphimedine and analogues.

10.
J Am Chem Soc ; 144(28): 12698-12714, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35767015

RESUMO

This paper describes the syntheses of several functionalized dihydropyrene (DHP) molecular switches with different substitution patterns. Regioselective nucleophilic alkylation of a 5-substituted dimethyl isophthalate allowed the development of a workable synthetic protocol for the preparation of 2,7-alkyne-functionalized DHPs. Synthesis of DHPs with surface-anchoring groups in the 2,7- and 4,9-positions is described. The molecular structures of several intermediates and DHPs were elucidated by X-ray single-crystal diffraction. Molecular properties and switching capabilities of both types of DHPs were assessed by light irradiation experiments, spectroelectrochemistry, and cyclic voltammetry. Spectroelectrochemistry, in combination with density functional theory (DFT) calculations, shows reversible electrochemical switching from the DHP forms to the cyclophanediene (CPD) forms. Charge-transport behavior was assessed in single-molecule scanning tunneling microscope (STM) break junctions, combined with density functional theory-based quantum transport calculations. All DHPs with surface-contacting groups form stable molecular junctions. Experiments show that the molecular conductance depends on the substitution pattern of the DHP motif. The conductance was found to decrease with increasing applied bias.

11.
iScience ; 25(1): 103571, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34984327

RESUMO

Mesothelioma is a cancer that typically originates in the pleura of the lungs. It rapidly invades the surrounding tissues, causing pain and shortness of breath. We compared cell lines injected either subcutaneously or intrapleurally and found that only the latter resulted in invasive and rapid growth. Pleural tumors displayed a transcriptional signature consistent with increased activity of nuclear receptors PPARα and PPARγ and with an increased abundance of endogenous PPAR-activating ligands. We found that chemical probe GW6471 is a potent, dual PPARα/γ antagonist with anti-invasive and anti-proliferative activity in vitro. However, administration of GW6471 at doses that provided sustained plasma exposure levels sufficient for inhibition of PPARα/γ transcriptional activity did not result in significant anti-mesothelioma activity in mice. Lastly, we demonstrate that the in vitro anti-tumor effect of GW6471 is off-target. We conclude that dual PPARα/γ antagonism alone is not a viable treatment modality for mesothelioma.

12.
Bioconjug Chem ; 32(8): 1652-1666, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34160215

RESUMO

Isotope-coded affinity tags (ICATs) are valuable tools for mass spectrometry-based quantitative proteomics, in particular, for comparison of protein (cysteine-residue) thiol oxidation state in normal, stressed, and diseased tissue. However, the iodoacetamido electrophile used in most commercial ICATs suffers from poor thiol-selectivity and modest rates of adduct formation, which can lead to spurious results. Hence, we designed and synthesized three ICATs containing thiol-selective N-alkylmaleimide electrophiles (isotope-coded maleimide affinity tags = ICMATs) and assessed these as mass spectrometry probes for ratiometric analysis of lysozyme and muscle proteomes. Two ICMAT pairs containing butylene/D8-butylene linkers were effective MS probes, but not ideal for typical proteomics workflows, because peptides bearing these tags frequently did not coelute with HPLC. A switch to a phenylene/13C6-phenylene linker solved this issue without compromising the efficiency of adduct formation.


Assuntos
Isótopos de Carbono/química , Marcação por Isótopo/métodos , Maleimidas/química , Proteínas Musculares/metabolismo , Proteômica/métodos , Animais , Cromatografia Líquida , Cães , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos mdx , Modelos Moleculares , Proteínas Musculares/química , Proteínas Musculares/genética , Músculo Esquelético , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
13.
J Nat Prod ; 83(12): 3623-3634, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33314932

RESUMO

The 2,6'-bijuglone natural product diospyrin and its unnatural 3,6'-isomer idospyrin have been synthesized in seven steps each from N,N-diethylsenecioamide in overall yields of 12% and 13%, respectively. The syntheses diverge from ramentaceone (7-methyljuglone) and include a key Suzuki-Miyaura cross-coupling. Diospyrin, idospyrin, and several synthetic precursors exhibit potent and selective cytotoxicity to the murine myeloma NS-1 cell line over neonatal foreskin cells.


Assuntos
Antineoplásicos/farmacologia , Antituberculosos/farmacologia , Naftoquinonas/química , Antineoplásicos/química , Antituberculosos/química , Isomerismo , Naftoquinonas/síntese química , Naftoquinonas/farmacologia
14.
ACS Med Chem Lett ; 11(3): 278-285, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32184957

RESUMO

Trypanosoma brucei (T. brucei) and Trypanosoma cruzi (T. cruzi) are causative agents of parasitic diseases known as human African trypanosomiasis and Chagas disease, respectively. Together, these diseases affect 68 million people around the world. Current treatments are unsatisfactory, frequently associated with intolerable side-effects, and generally inadequate in treating all stages of disease. In this paper, we report the discovery of N-ethylurea pyrazoles that potently and selectively inhibit the viability of T. brucei and T. cruzi. Sharp and logical SAR led to the identification of 54 as the best compound, with an in vitro IC50 of 9 nM and 16 nM against T. b. brucei and T. cruzi, respectively. Compound 54 demonstrates favorable physicochemical properties and was efficacious in a murine model of Chagas disease, leading to undetectable parasitemia within 6 days when CYP metabolism was inhibited.

15.
Res Vet Sci ; 126: 192-198, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31539796

RESUMO

The objective of the study was to (1) characterize and compare the chemical composition at the surface, subsurface and in the bulk of thin plastic films used for portosystemic shunt attenuation in their native state and after plasma exposure. (2) Assess the presence, concentration and location of irritant compounds (e.g dicetyl phosphate) within the films. Attenuated Total Reflectance Infrared Spectroscopy (ATR-IR), X-ray Photoelectron Spectroscopy (XPS) and dynamic Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) were used to analyze thirteen thin plastic films. Sample thickness was visualized and measured using Scanning Electron Microscopy (SEM). Sample thicknesses were compared using a one-way ANOVA. XPS reported low phosphorous concentrations (surrogate marker of dicetyl phosphate) between 0.01 and 0.19% wt at the sample surfaces (top 10 nm). There were significant differences between film thicknesses (P < .001) observed by SEM. The ATR-IR and ToF-SIMS identified four distinct surface and bulk chemical profiles: 1) Cellophane, 2) Polypropylene, 3) Modified Cellophane, and 4) Unique. Following plasma immersion for 6 weeks, samples showed little change in film thickness or chemical composition. This study confirmed that films used to attenuate portosystemic shunts were commonly not pure cellophane, with significant variations in surface and bulk chemistry. Suspected irritant compounds were not readily identifiable in significant proportions. Pronounced variability existed in both the thickness and chemical composition of these films (surface vs. bulk). The present findings lead to a legitimate question about the reproducibility of shunt occlusion when using thin plastic films from different origins.


Assuntos
Plásticos/análise , Plásticos/química , Derivação Portossistêmica Cirúrgica/veterinária , Animais , Gatos , Cães , Microscopia Eletrônica de Varredura/veterinária , Espectroscopia Fotoeletrônica/veterinária , Derivação Portossistêmica Cirúrgica/estatística & dados numéricos , Reprodutibilidade dos Testes , Espectrometria de Massa de Íon Secundário/veterinária , Espectrofotometria Infravermelho/veterinária , Propriedades de Superfície
16.
ACS Appl Mater Interfaces ; 11(40): 36886-36894, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31522492

RESUMO

Developing molecular circuits that can function as the active components in electrical devices is an ongoing challenge in molecular electronics. It demands mechanical stability of the single-molecule circuit while simultaneously being responsive to external stimuli mimicking the operation of conventional electronic components. Here, we report single-molecule circuits based on spiropyran derivatives that respond electrically to chemical and mechanical stimuli. The merocyanine that results from the protonation/ring-opening of the spiropyran form showed single-molecule diode characteristics, with an average current rectification ratio of 5 at ±1 V, favoring the orientation where the positively charged end of the molecule is attached to the negative terminal of the circuit. Mechanical pulling of a single spiropyran molecule drives a switch to a more conducting merocyanine state. The mechanical switching is enabled by the strong Au-C covalent bonding between the molecule and the electrodes, which allows the tensile force delivered by the STM piezo to break the molecule at its spiropyran C-O bond.

17.
Org Lett ; 21(14): 5519-5523, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31287326

RESUMO

The first approaches to the 10'-anthronyl-2-anthraquinone skeleton have been devised, allowing two syntheses of the marine natural product albopunctatone. Both routes involve regioselective addition of a nucleophilic masked anthraquinone to a protected chrysazin derivative; the best affords albopunctatone in five steps and 35% overall yield. Albopunctatone exhibits potent inhibitory activity against Plasmodium falciparum and negligible toxicity to a range of other microbial pathogens and mammalian cells.


Assuntos
Antraquinonas/química , Antraquinonas/síntese química , Antimaláricos/química , Antimaláricos/síntese química , Urocordados/química , Animais , Antraquinonas/farmacologia , Antimaláricos/farmacologia , Linhagem Celular , Técnicas de Química Sintética , Humanos , Modelos Moleculares , Conformação Molecular , Plasmodium falciparum/efeitos dos fármacos
18.
Inorg Chem ; 58(6): 3789-3799, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30835116

RESUMO

Several trinuclear ferrocenes are obtained by Friedel-Crafts reaction of octamethylferrocene with ferrocenoyl chloride and subsequent modifications. 1,1'-Diferrocenoyloctamethylferrocene (3) is transformed to the divinyl derivative (4a) by reaction with MeLi and AlCl3. The reactive 4a cyclizes spontaneously to a [4]ferrocenophane with buta-1,3-diene handle (5) or in the presence of AlCl3 to a [3]ferrocenophane with propene handle (6). Structure assignments are supported by X-ray crystallography and NMR spectroscopy, and mechanisms are proposed. Electrochemical behavior of the compounds was investigated with cyclic voltammetry, and assignments of the redox processes were carried out with the aid of density functional theory calculations. The synthesized compounds and demonstrated transformations represent useful tools for preparation of materials for charge-transport studies in metal-molecule-metal junctions.

19.
PLoS One ; 13(11): e0207471, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30440023

RESUMO

OBJECTIVE: To (1) characterise the chemical and ultra-structural composition of ameroid constrictors, at a native state and during in vitro expansion and (2) determine the presence of irritant compounds at the surface or within the bulk of the constrictor. METHODS: Twelve sterile, commercially packaged ameroid constrictors (3 repeats of 3.5 mm, 5 mm, 6 mm and 7 mm internal diameter) were analysed by time-of-flight secondary ion mass spectrometry, Raman spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy and scanning electron microscopy. RESULTS: Ameroid constrictors have a composition commensurate with casein with little-to-no intra- or inter- constrictor variation. Microscopic analysis indicated that the topographical features of the constrictor surfaces were consistent between all constrictors. Following in vitro expansion there was a reproducible decrease in Ca+ ion content, little-to-no variation in secondary protein structure and morphological changes including the presence of surface aggregates present only at the inner surface of the ameroid constrictor. The potential irritant polydimethylsiloxane was found on the constrictor surface. A trace quantity of an ion fragment assigned as formaldehyde was detected; however, the extremely low level is thought highly unlikely to play a role as an inflammatory trigger clinically. DISCUSSION: There is a high degree of inter- and intra-constrictor homogeneity from different batches, and reproducible ultrastructural changes following in vitro expansion. Variations occur in both the surface chemistry and topography of the device during closure, which can potentially affect the biomaterial-host interface. Ameroid constrictor closure mechanism is likely involving calcium-mediated inter-protein interactions rather than the imbibition of water only.


Assuntos
Caseínas/ultraestrutura , Inflamação/fisiopatologia , Conformação Proteica/efeitos dos fármacos , Animais , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Caseínas/efeitos adversos , Caseínas/química , Cães , Formaldeído/química , Hidrogéis/efeitos adversos , Hidrogéis/química , Inflamação/induzido quimicamente , Microscopia Eletrônica de Varredura
20.
J Nat Prod ; 81(7): 1658-1665, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30020782

RESUMO

The identity of the natural product samoquasine A has remained obscure since its isolation from custard apple seeds in 2000. One of the proposed structures, benzo[ f]phthalazin-4(3 H)-one, was prepared in two steps by regioselective ortho-lithiation/formylation of N, N-diisopropyl-2-naphthylamide, followed by cyclization with hydrazine, but was shown to be different from the natural product. Perlolidine, another candidate structure, was synthesized by a novel route involving a ß-selective Heck reaction of butyl vinyl ether. Both perlolidine and samoquasine A are converted by trimethylsilyldiazomethane into the same N-methyl derivative. In addition, the 13C NMR spectra of perlolidine and another structurally mis-assigned natural product, cherimoline, are almost identical. Thus, both samoquasine A and cherimoline are actually perlolidine.


Assuntos
Annona/química , Quinazolinas/química , Produtos Biológicos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA