Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 47(9): 1662-1671, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35660803

RESUMO

Mapping individual differences in behavior is fundamental to personalized neuroscience, but quantifying complex behavior in real world settings remains a challenge. While mobility patterns captured by smartphones have increasingly been linked to a range of psychiatric symptoms, existing research has not specifically examined whether individuals have person-specific mobility patterns. We collected over 3000 days of mobility data from a sample of 41 adolescents and young adults (age 17-30 years, 28 female) with affective instability. We extracted summary mobility metrics from GPS and accelerometer data and used their covariance structures to identify individuals and calculated the individual identification accuracy-i.e., their "footprint distinctiveness". We found that statistical patterns of smartphone-based mobility features represented unique "footprints" that allow individual identification (p < 0.001). Critically, mobility footprints exhibited varying levels of person-specific distinctiveness (4-99%), which was associated with age and sex. Furthermore, reduced individual footprint distinctiveness was associated with instability in affect (p < 0.05) and circadian patterns (p < 0.05) as measured by environmental momentary assessment. Finally, brain functional connectivity, especially those in the somatomotor network, was linked to individual differences in mobility patterns (p < 0.05). Together, these results suggest that real-world mobility patterns may provide individual-specific signatures relevant for studies of development, sleep, and psychopathology.


Assuntos
Afeto , Sono , Adolescente , Adulto , Encéfalo , Feminino , Humanos , Psicopatologia , Smartphone , Adulto Jovem
2.
Dev Cogn Neurosci ; 43: 100788, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32510347

RESUMO

Diffusion weighted imaging (DWI) has advanced our understanding of brain microstructure evolution over development. Recently, the use of multi-shell diffusion imaging sequences has coincided with advances in modeling the diffusion signal, such as Neurite Orientation Dispersion and Density Imaging (NODDI) and Laplacian-regularized Mean Apparent Propagator MRI (MAPL). However, the relative utility of recently-developed diffusion models for understanding brain maturation remains sparsely investigated. Additionally, despite evidence that motion artifact is a major confound for studies of development, the vulnerability of metrics derived from contemporary models to in-scanner motion has not been described. Accordingly, in a sample of 120 youth and young adults (ages 12-30) we evaluated metrics derived from diffusion tensor imaging (DTI), NODDI, and MAPL for associations with age and in-scanner head motion at multiple scales. Specifically, we examined mean white matter values, white matter tracts, white matter voxels, and connections in structural brain networks. Our results revealed that multi-shell diffusion imaging data can be leveraged to robustly characterize neurodevelopment, and demonstrate stronger age effects than equivalent single-shell data. Additionally, MAPL-derived metrics were less sensitive to the confounding effects of head motion. Our findings suggest that multi-shell imaging data and contemporary modeling techniques confer important advantages for studies of neurodevelopment.


Assuntos
Encéfalo/crescimento & desenvolvimento , Imagem de Tensor de Difusão/métodos , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA