Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 123: 228-240, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031862

RESUMO

Nanoparticles targeting transporters of the blood-brain barrier (BBB) are promising candidates to increase the brain penetration of biopharmacons. Solute carriers (SLC) are expressed at high levels in brain endothelial cells and show a specific pattern at the BBB. The aim of our study was to test glutathione and ligands of SLC transporters as single or dual BBB targeting molecules for nanovesicles. High mRNA expression levels for hexose and neutral amino acid transporting SLCs were found in isolated rat brain microvessels and our rat primary cell based co-culture BBB model. Niosomes were derivatized with glutathione and SLC ligands glucopyranose and alanine. Serum albumin complexed with Evans blue (67 kDa), which has a very low BBB penetration, was selected as a cargo. The presence of targeting ligands on niosomes, especially dual labeling, increased the uptake of the cargo molecule in cultured brain endothelial cells. This cellular uptake was temperature dependent and could be decreased with a metabolic inhibitor and endocytosis blockers filipin and cytochalasin D. Making the negative surface charge of brain endothelial cells more positive with a cationic lipid or digesting the glycocalyx with neuraminidase elevated the uptake of the cargo after treatment with targeted nanocarriers. Treatment with niosomes increased plasma membrane fluidity, suggesting the fusion of nanovesicles with endothelial cell membranes. Targeting ligands elevated the permeability of the cargo across the BBB in the culture model and in mice, and dual-ligand decoration of niosomes was more effective than single ligand labeling. Our data indicate that dual labeling with ligands of multiple SLC transporters can potentially be exploited for BBB targeting of nanoparticles.


Assuntos
Alanina/metabolismo , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Células Endoteliais/metabolismo , Azul Evans/metabolismo , Glucose/metabolismo , Lipídeos/química , Nanopartículas , Albumina Sérica/metabolismo , Proteínas Carreadoras de Solutos/metabolismo , Alanina/química , Animais , Transporte Biológico , Barreira Hematoencefálica/citologia , Células Cultivadas , Técnicas de Cocultura , Composição de Medicamentos , Azul Evans/administração & dosagem , Azul Evans/química , Feminino , Glucose/análogos & derivados , Glucose/química , Glutationa/química , Glutationa/metabolismo , Ligantes , Lipossomos , Masculino , Camundongos Nus , Ratos Wistar , Albumina Sérica/administração & dosagem , Albumina Sérica/química , Proteínas Carreadoras de Solutos/genética
2.
Cell Stress Chaperones ; 21(2): 327-38, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26631139

RESUMO

Changes in the levels of three structurally and functionally different important thermoprotectant molecules, namely small heat shock proteins (sHsps), trehalose, and lipids, have been investigated upon heat shock in Schizosaccharomyces pombe. Both α-crystallin-type sHsps (Hsp15.8 and Hsp16) were induced after prolonged high-temperature treatment but with different kinetic profiles. The shsp null mutants display a weak, but significant, heat sensitivity indicating their importance in the thermal stress management. The heat induction of sHsps is different in wild type and in highly heat-sensitive trehalose-deficient (tps1Δ) cells; however, trehalose level did not show significant alteration in shsp mutants. The altered timing of trehalose accumulation and induction of sHsps suggest that the disaccharide might provide protection at the early stage of the heat stress while elevated amount of sHsps are required at the later phase. The cellular lipid compositions of two different temperature-adapted wild-type S. pombe cells are also altered according to the rule of homeoviscous adaptation, indicating their crucial role in adapting to the environmental temperature changes. Both Hsp15.8 and Hsp16 are able to bind to different lipids isolated from S. pombe, whose interaction might provide a powerful protection against heat-induced damages of the membranes. Our data suggest that all the three investigated thermoprotectant macromolecules play a pivotal role during the thermal stress management in the fission yeast.


Assuntos
Proteínas de Choque Térmico Pequenas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Trealose/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico Pequenas/genética , Temperatura Alta , Bicamadas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Mutação , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Estresse Fisiológico , Trealose/genética
3.
Fluids Barriers CNS ; 12: 17, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26184769

RESUMO

BACKGROUND: The apolipoprotein B-100 (ApoB-100) transgenic mouse line is a model of human atherosclerosis. Latest findings suggest the importance of ApoB-100 in the development of neurodegenerative diseases and microvascular/perivascular localization of ApoB-100 protein was demonstrated in the cerebral cortex of ApoB-100 transgenic mice. The aim of the study was to characterize cultured brain endothelial cells, pericytes and glial cells from wild-type and ApoB-100 transgenic mice and to study the effect of oxidized low-density lipoprotein (oxLDL) on these cells. METHODS: Morphology of cells isolated from brains of wild type and ApoB-100 transgenic mice was characterized by immunohistochemistry and the intensity of immunolabeling was quantified by image analysis. Toxicity of oxLDL treatment was monitored by real-time impedance measurement and lactate dehydrogenase release. Reactive oxygen species and nitric oxide production, barrier permeability in triple co-culture blood-brain barrier model and membrane fluidity were also determined after low-density lipoprotein (LDL) or oxLDL treatment. RESULTS: The presence of ApoB-100 was confirmed in brain endothelial cells, while no morphological change was observed between wild type and transgenic cells. Oxidized but not native LDL exerted dose-dependent toxicity in all three cell types, induced barrier dysfunction and increased reactive oxygen species (ROS) production in both genotypes. A partial protection from oxLDL toxicity was seen in brain endothelial and glial cells from ApoB-100 transgenic mice. Increased membrane rigidity was measured in brain endothelial cells from ApoB-100 transgenic mice and in LDL or oxLDL treated wild type cells. CONCLUSION: The morphological and functional properties of cultured brain endothelial cells, pericytes and glial cells from ApoB-100 transgenic mice were characterized and compared to wild type cells for the first time. The membrane fluidity changes in ApoB-100 transgenic cells related to brain microvasculature indicate alterations in lipid composition which may be linked to the partial protection against oxLDL toxicity.


Assuntos
Apolipoproteína B-100/metabolismo , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiologia , Lipoproteínas LDL/toxicidade , Animais , Apolipoproteína B-100/genética , Aterosclerose/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fluidez de Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Óxido Nítrico/metabolismo , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
J Pharm Sci ; 103(10): 3107-19, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25042090

RESUMO

Sucrose fatty acid esters are increasingly used as excipients in pharmaceutical products, but few data are available on their toxicity profile, mode of action, and efficacy on intestinal epithelial models. Three water-soluble sucrose esters, palmitate (P-1695), myristate (M-1695), laurate (D-1216), and two reference absorption enhancers, Tween 80 and Cremophor RH40, were tested on Caco-2 cells. Caco-2 monolayers formed a good barrier as reflected by high transepithelial resistance and positive immunostaining for junctional proteins claudin-1, ZO-1, and ß-catenin. Sucrose esters in nontoxic concentrations significantly reduced resistance and impedance, and increased permeability for atenolol, fluorescein, vinblastine, and rhodamine 123 in Caco-2 monolayers. No visible opening of the tight junctions was induced by sucrose esters assessed by immunohistochemistry and electron microscopy, but some alterations were seen in the structure of filamentous actin microfilaments. Sucrose esters fluidized the plasma membrane and enhanced the accumulation of efflux transporter ligands rhodamine 123 and calcein AM in epithelial cells, but did not inhibit the P-glycoprotein (P-gp)-mediated calcein AM accumulation in MES-SA/Dx5 cell line. These data indicate that in addition to their dissolution-increasing properties sucrose esters can enhance drug permeability through both the transcellular and paracellular routes without inhibiting P-gp.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Sacarose/farmacologia , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Ésteres/química , Humanos , Mucosa Intestinal/metabolismo , Fluidez de Membrana/efeitos dos fármacos , Sacarose/química
5.
PLoS One ; 6(12): e28818, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174906

RESUMO

Aging and pathophysiological conditions are linked to membrane changes which modulate membrane-controlled molecular switches, causing dysregulated heat shock protein (HSP) expression. HSP co-inducer hydroxylamines such as BGP-15 provide advanced therapeutic candidates for many diseases since they preferentially affect stressed cells and are unlikely have major side effects. In the present study in vitro molecular dynamic simulation, experiments with lipid monolayers and in vivo ultrasensitive fluorescence microscopy showed that BGP-15 alters the organization of cholesterol-rich membrane domains. Imaging of nanoscopic long-lived platforms using the raft marker glycosylphosphatidylinositol-anchored monomeric green fluorescent protein diffusing in the live Chinese hamster ovary (CHO) cell plasma membrane demonstrated that BGP-15 prevents the transient structural disintegration of rafts induced by fever-type heat stress. Moreover, BGP-15 was able to remodel cholesterol-enriched lipid platforms reminiscent of those observed earlier following non-lethal heat priming or membrane stress, and were shown to be obligate for the generation and transmission of stress signals. BGP-15 activation of HSP expression in B16-F10 mouse melanoma cells involves the Rac1 signaling cascade in accordance with the previous observation that cholesterol affects the targeting of Rac1 to membranes. Finally, in a human embryonic kidney cell line we demonstrate that BGP-15 is able to inhibit the rapid heat shock factor 1 (HSF1) acetylation monitored during the early phase of heat stress, thereby promoting a prolonged duration of HSF1 binding to heat shock elements. Taken together, our results indicate that BGP-15 has the potential to become a new class of pharmaceuticals for use in 'membrane-lipid therapy' to combat many various protein-misfolding diseases associated with aging.


Assuntos
Proteínas de Choque Térmico/metabolismo , Lipídeos de Membrana/uso terapêutico , Microdomínios da Membrana/metabolismo , Oximas/farmacologia , Piperidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Células CHO , Colesterol/metabolismo , Cricetinae , Cricetulus , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Melanoma/patologia , Microdomínios da Membrana/efeitos dos fármacos , Camundongos , Simulação de Dinâmica Molecular , Nanoestruturas/química , Temperatura , beta-Ciclodextrinas/farmacologia , Proteínas rac1 de Ligação ao GTP/metabolismo
6.
J Biol Chem ; 285(50): 38811-7, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20921229

RESUMO

The possible mechanism of casein aggregation and micelle buildup was studied in a new approach by letting α-casein adsorb from low concentration (0.1 mg·ml(-1)) solutions onto the charged surfaces of polyelectrolyte films. It was found that α-casein could adsorb onto both positively and negatively charged surfaces. However, only when its negative phosphoseryl clusters remained free, i.e. when it adsorbed onto a negative surface, could calcium phosphate (CaP) nanoclusters bind to the casein molecules. Once the CaP clusters were in place, step-by-step building of multilayered casein architectures became possible. The presence of CaP was essential; neither Ca(2+) nor phosphate could alone facilitate casein aggregation. Thus, it seems that CaP is the organizing motive in the casein micelle formation. Atomic force microscopy revealed that even a single adsorbed casein layer was composed of very small (in the range of tens of nanometers) spherical forms. The stiffness of the adsorbed casein layer largely increased in the presence of CaP. On this basis, we can imagine that casein micelles emerge according to the following scheme. The amphipathic casein monomers aggregate into oligomers via hydrophobic interactions even in the absence of CaP. Full scale, CaP-carrying micelles could materialize by interlocking these casein oligomers with CaP nanoclusters. Such a mechanism would not contradict former experimental results and could offer a synthesis between the submicelle and the block copolymer models of casein micelles.


Assuntos
Caseínas/química , Adsorção , Animais , Biofísica/métodos , Cálcio/química , Fosfatos de Cálcio/química , Bovinos , Eletrólitos/química , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Micelas , Microscopia de Força Atômica/métodos , Leite , Nanopartículas/química , Mapeamento de Interação de Proteínas , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
7.
Langmuir ; 23(15): 8236-42, 2007 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-17585791

RESUMO

Dipalmitoylphosphatidylcholine (DPPC) bilayer was created on the surface of an exponentially growing poly(glutamic acid)/poly(lysine) (PGA/PLL) layer-by-layer polyelectrolyte film. The lipid bilayer decreased the surface roughness of the polyelectrolyte film. The layer-by-layer construction of the polyelectrolyte film could be continued on the top of the DPPC layer. The lipid bilayer, however, formed a barrier in the interior of the polyelectrolyte film, which blocked the diffusion (a prerequisite for exponential growth) of the polyelectrolytes. Thus, a new growth regime started in the upper part of the polyelectrolyte film, which was added to embed the DPPC bilayer. The structure and the dynamics of the DPPC bilayer on the polyelectrolyte film surface remained similar to that of its hydrated multibilayers, except that the phase transition became wider. In the case of embedded DPPC bilayers, in addition, the phase-transition temperature also decreased. This is the result of interactions with the nonconcerted movements of the barrier-separated lower and higher parts of the polyelectrolyte film. Gramicidin A (GRA) as a model of lipid-soluble peptides and proteins was successfully incorporated into such DPPC films. The DPPC films, either with or without GRA, were remarkably stable; as many heating-cooling cycles to measure phase transition could be carried out without visible alterations as wanted.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Gramicidina/química , Bicamadas Lipídicas/química , Ácido Poliglutâmico/análogos & derivados , Polilisina/análogos & derivados , Temperatura Alta , Transição de Fase , Ácido Poliglutâmico/química , Polilisina/química , Propriedades de Superfície
8.
Langmuir ; 22(13): 5753-9, 2006 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-16768505

RESUMO

Layer-by-layer (LBL) polyelectrolyte films were constructed from poly(L-glutamic acid) (PGA) and poly(L-aspartic acid) (PAA) as polyanions, and from poly(L-lysine) (PLL) as the polycation. The terminating layer of the films was always PLL. According to attenuated total reflection Fourier transform infrared measurements, the PGA/PLL and PAA/PLL films, despite their chemical similarity, had largely different secondary structures. Extended beta-sheets dominated the PGA/PLL films, while alpha-helices and intramolecular beta-sheets dominated the PAA/PLL films. The secondary structure of the polyelectrolyte film affected the adsorption of human serum albumin (HSA) as well. HSA preserved its native secondary structure on the PGA/PLL film, but it became largely deformed on PAA/PLL films. Both PGA and PAA were able to extrude to a certain extent the other polyanion from the films, but the structural consequences were different. Adding PAA to a (PGA/PLL)5-PGA film resulted in a simple exchange and incorporation: PGA/PLL and PAA/PLL complexes coexisted with their unaltered secondary structures in the mixed film. The incorporation of PGA into a (PAA/PLL)5-PAA film was up to 50% and caused additional beta-structure increase in the secondary structure of the film. The proportions of the two polyanions were roughly the same on the surfaces and in the interiors of the films, indicating practically free diffusion for both polyanions. The abundance of PAA/PLL and PGA/PLL domains on the film surfaces was monitored by the analysis of the amide I region of the infrared spectrum of a reporter molecule, HSA, adsorbed onto the three-component polyelectrolyte films.


Assuntos
Peptídeos/química , Ácido Poliglutâmico/química , Adsorção , Eletroquímica , Eletrólitos/química , Humanos , Técnicas In Vitro , Albumina Sérica/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA