Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 289(45): 31638-46, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25248747

RESUMO

Previous studies have shown that the myeloid-specific deficiency of the transcription factor Krüppel-like factor 2 (KLF2) accelerates atherosclerosis in hypercholesterolemic Ldlr(-/-) mice due to the enhanced adhesion of myeloid cells to activated endothelial cells in the vessel wall. This study revealed elevated basal inflammation with elevated plasma levels of Ccl2, Ccl4, Ccl5, and Ccl11 in the myeloid-specific KLF2 knock-out (myeKlf2(-/-)) mice. Peritoneal macrophages isolated from myeKlf2(-/-) mice showed increased mRNA levels of several inflammatory mediators, including Ccl2, Ccl5, Ccl7, Cox-2, Cxcl1, and IL-6. In contrast, the levels of two microRNAs, miR-124a and miR-150, were lower in Klf2(-/-) macrophages compared with Klf2(+/+) macrophages. Additional studies showed a direct inverse relationship between miR-124a levels with Ccl2 expression, with anti-miR-124a increasing Ccl2 mRNA levels in Klf2(+/+) macrophages, whereas the restoration of miR-124a levels in Klf2(-/-) macrophages significantly reduced Ccl2 mRNA expression. Likewise, the inverse relationship was observed between miR-150 levels and Cxcl1 expression in Klf2(+/+) and Klf2(-/-) mice. Moreover, miR150 likely regulates the miR124a expression and thus augments expression of inflammatory mediators in myeKlf2(-/-) macrophages. This study documented that the transcription factor KLF2 modulates inflammatory chemokine production via regulation of microRNA expression levels in immune cells.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Macrófagos Peritoneais/metabolismo , MicroRNAs/sangue , Animais , Aterosclerose/genética , Sequência de Bases , Sítios de Ligação , Quimiocinas/metabolismo , Feminino , Inflamação , Fatores de Transcrição Kruppel-Like/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Células Mieloides/citologia , Células Mieloides/metabolismo
2.
Circ Res ; 110(10): 1294-302, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22474254

RESUMO

RATIONALE: Hemizygous deficiency of the transcription factor Krüppel-like factor 2 (KLF2) has been shown previously to augment atherosclerosis in hypercholesterolemic mice. However, the cell type responsible for the increased atherosclerosis due to KLF2 deficiency has not been identified. This study examined the consequence of myeloid cell-specific KLF2 inactivation in atherosclerosis. METHODS AND RESULTS: Cell-specific knockout mice were generated by Cre/loxP recombination. Macrophages isolated from myeloid-specific Klf2 knockout (myeKlf2(-/-)) mice were similar to myeKlf2(+/+) macrophages in response to activation, polarization, and lipid accumulation. However, in comparison to myeKlf2(+/+) macrophages, myeKlf2(-/-) macrophages adhered more robustly to endothelial cells. Neutrophils from myeKlf2(-/-) mice also adhered more robustly to endothelial cells, and fewer myeKlf2(-/-) neutrophils survived in culture over a 24-hour period in comparison with myeKlf2(+/+) neutrophils. When myeKlf2(-/-) mice were mated to Ldlr(-/-) mice and then fed a high fat and high cholesterol diet, significant increase in atherosclerosis was observed in the myeKlf2(-/-)Ldlr(-/-) mice compared with myeKlf2(+/+)Ldlr(-/-) littermates. The increased atherosclerosis in myeKlf2(-/-)Ldlr(-/-) mice was associated with elevated presence of neutrophils and macrophages, with corresponding increase of myeloperoxidase as well as chlorinated and nitrosylated tyrosine epitopes in their lesion areas compared with myeKlf2(+/+)Ldlr(-/-) mice. CONCLUSIONS: This study documents a role for myeloid KLF2 expression in modulating atherosclerosis. The increased neutrophil accumulation and atherosclerosis progression with myeloid-specific KLF2 deficiency also underscores the importance of neutrophils in promoting vascular oxidative stress and atherosclerosis. Collectively, these results suggest that elevating KLF2 expression may be a novel strategy for prevention and treatment of atherosclerosis.


Assuntos
Aterosclerose/imunologia , Adesão Celular/imunologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Macrófagos/imunologia , Neutrófilos/imunologia , Animais , Aterosclerose/patologia , Morte Celular/imunologia , Células Endoteliais/citologia , Células Endoteliais/imunologia , Feminino , Hipercolesterolemia/imunologia , Hipercolesterolemia/patologia , Contagem de Linfócitos , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/citologia , Vasculite/imunologia , Vasculite/patologia
3.
J Immunol ; 181(10): 7106-14, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18981131

RESUMO

Histoplasma capsulatum (Hc) is a pathogenic fungus that replicates in macrophages (Mphi). In dendritic cells (DC), Hc is killed and fungal Ags are processed and presented to T cells. DC recognize Hc yeasts via the VLA-5 receptor, whereas Mphi recognize yeasts via CD18. To identify ligand(s) on Hc recognized by DC, VLA-5 was used to probe a Far Western blot of a yeast freeze/thaw extract (F/TE) that inhibited Hc binding to DC. VLA-5 recognized a 20-kDa protein, identified as cyclophilin A (CypA), and CypA was present on the surface of Hc yeasts. rCypA inhibited the attachment of Hc to DC, but not to Mphi. Silencing of Hc CypA by RNA interference reduced yeast binding to DC by 65-85%, but had no effect on binding to Mphi. However, F/TE from CypA-silenced yeasts still inhibited binding of wild-type Hc to DC, and F/TE from wild-type yeasts depleted of CypA also inhibited yeast binding to DC. rCypA did not further inhibit the binding of CypA-silenced yeasts to DC. Polystyrene beads coated with rCypA or fibronectin bound to DC and Mphi and to Chinese hamster ovary cells transfected with VLA-5. Binding of rCypA-coated beads, but not fibronectin-coated beads, was inhibited by rCypA. These data demonstrate that CypA serves as a ligand for DC VLA-5, that binding of CypA to VLA-5 is at a site different from FN, and that there is at least one other ligand on the surface of Hc yeasts that mediates binding of Hc to DC.


Assuntos
Antígenos de Fungos/imunologia , Ciclofilina A/imunologia , Células Dendríticas/microbiologia , Histoplasma/imunologia , Integrina alfa5beta1/imunologia , Antígenos de Fungos/metabolismo , Western Blotting , Ciclofilina A/genética , Ciclofilina A/metabolismo , Células Dendríticas/imunologia , Citometria de Fluxo , Histoplasma/genética , Histoplasma/metabolismo , Humanos , Integrina alfa5beta1/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA