Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 263: 127816, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32835965

RESUMO

This study investigates the performance of oak (OL) and mulberry (ML) leaves for synthesized of nanoscale zero-valent iron (nZVI), in immobilizing Cu and Ni in contaminated sediment. Characterization of synthesized Fe nanoparticles from oak and mulberry leaf extracts demonstrated that they are nontoxic and stabile nanomaterials for application in the sediment remediation. Effectiveness of stabilization process was performed by microwave-assisted sequential extraction procedure (MWSE) and single-step leaching tests which have been applied to evaluate the metal extraction potential. This research showed that OL-nZVI and ML-nZVI were effective in transforming available Cu and Ni to stable fraction. The maximum residual percentage of Cu increased by 76% and 73%, and for Ni 81% and 80%, respectively, with addition of 5% OL-nZVI and 5% ML-nZVI. Used single-step leaching tests (Toxicity Characteristic Leaching Procedure-TCLP and German standard test- DIN) indicated that all stabilized samples can be considered as non-hazardous waste, as all leached metal concentrations met the appropriate set criteria. Cost analysis showed that the operating cost for contaminated sediment treatment with green synthesized nZVI are 50.37 €/m3/per year. This work provides a new insight into the immobilization mechanism and environmental impact of Cu and Ni in contaminated sediment and potential way of treatment with OL-nZVI and ML-nZVI. Generally, nZVI can be an effective and versatile tool for stabilization of sediment polluted with toxic metals.


Assuntos
Recuperação e Remediação Ambiental , Morus , Poluentes do Solo , Análise Custo-Benefício , Ferro , Extratos Vegetais , Rios
2.
Sci Total Environ ; 684: 186-195, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31153066

RESUMO

After dredging of contaminated sediment, additional remediation technique is required before its final disposal. For this purpose, this research was based on the long-term stabilization/solidification (S/S) process of highly contaminated sediment (dominantly by heavy metals) from a European environmental hot spot, the Great Backa Canal. Due to optimisation of remediation techniques, this sediment is treated with selected immobilization agents: kaolinite, quicklime and Portland cement. The use of pseudo-total metal content (selected priority substances: Cr, Ni, Cu, Cd, Zn, Pb and As) in untreated sediment, determined that sediment urgently requires remediation. Short-term (after 7 and 28 days) and long-term (after 7 years) monitoring were done in order to estimate the concentrations of metals and effect on biota from S/S mixtures during this processes. The environmental risk assessment encompassed the application of several appropriate analytical methods: the pseudo-total metal content, the German standard leaching test - DIN 3841-4 S4 and Toxicity Characteristic Leaching Procedure - TCLP test leaching tests and sequential extraction procedure (BCR) on S/S mixtures, testing the aging process and toxicity effects. After simulating real environmental conditions using all tests in all three mixtures, metals do not exceed the prescribed limit values and as such S/S mixtures are classified as non-hazardous waste. Sequential extraction procedure showed that the highest percentage of metals are in the residual phase, bound to silicates and crystalline structure. After 7 years of S/S mixture aging, kaolinite showed the highest binding capacity that was reflected in the content of metals in the residual phase (34.8% of Ni to 77.6% of Cr). DIN and TCLP leaching tests confirmed that the exchangeable phase has a minor effect on the environment. Accordingly, this remediation technology could be well applied for final disposal of this and similar extremely contaminated sediment dominantly with inorganic pollutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA