Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e31905, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38868026

RESUMO

Biocontainment regulations restrict the research on NiV to BSL-4 laboratories, thus limiting the mechanistic studies related to viral entry and allied pathogenesis. Understanding the precise process of viral-particle production and host cell entry is critical for designing targeted therapies or particle-based vaccines. In this study, we have synthesized HiBiT-tagged-NiV-VLPs to ease in-vitro BSL-2 particle handling. We propose a simple yet effective approach of generating substantial amount of HiBiT-tagged NiV-VLPs in vitro by co-expressing viral structural proteins in HEK293T cells. Though homologous to parent virus, the incapacitated replication potential facilitates a BSL-2 handling of these particles. The inclusion of a highly sensitive HiBiT tag on these VLPs allows for a quick detection of viral binding and entry, as well as in assessing the efficiency of neutralizing antibodies in vitro using the NanoBiT technology. The HiBiT-tag binds in high affinity with LgBiT (Large BiT an 18 kDa fusion protein and complementary subunit of HiBiT peptide), and the resultant complex elicits high intensity luminescence in the presence of substrate. The VLPs produced were morphologically and functionally identical to the native virus, and the HiBiT-tag permitted their quick application in viral binding, entry, and antibody neutralization assays. "Thus, we report a simple setting for generating HiBiT-NiV VLPs which can be utilized in a BSL-2 laboratory, to concurrently quantify features of NiV assembly, binding and entry. This also offers an alternate-safe and effective platform for viral based antibody neutralization assays in vitro".

2.
Virus Genes ; 59(1): 55-66, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36344769

RESUMO

Epstein-Barr virus or human herpesvirus 4 (EBV/HHV-4) is an omnipresent oncovirus etiologically associated with various B-cell lymphomas and epithelial cancers. The malignant transformation associated with the persistent expression of viral proteins often deregulates the host cellular machinery and EBV infection is coupled to elevated levels of reactive oxygen species. Here, we investigated the role that the glutamate transporter EAAT3 plays in regulating the antioxidant system as a protective mechanism of EBV-infected cells against the virus-induced oxidative stress. Our study demonstrated that the expression of EAAT3 was upregulated and localized to the plasma membrane in EBV latently infected and de novo EBV-infected cells. EAAT3 was regulated by the transcription factor NFAT5 in the infected cells. Membrane localized EAAT3 was found to be involved in the transportation of glutamate from the extracellular space into the cell, as EAAT3 and NFAT5 inhibitors markedly reduced the levels of intracellular glutamate levels in EBV latently infected cells. Additionally, our data demonstrated a notable decrease in the intracellular glutathione levels following treatment with an EAAT3 inhibitor. Collectively, our results suggest that upregulation of the glutamate transporter EAAT3 is an adaptation of EBV-infected cells to maintain cellular redox homeostasis against the virus-induced oxidative stress, and that this cellular balance could be therapeutically destroyed by targeting EAAT3 to impede EBV-associated cancers.


Assuntos
Infecções por Vírus Epstein-Barr , Transportador 3 de Aminoácido Excitatório , Humanos , Antioxidantes , Glutamatos/metabolismo , Glutationa/metabolismo , Herpesvirus Humano 4 , Regulação para Cima , Transportador 3 de Aminoácido Excitatório/metabolismo
3.
Eur J Pharmacol ; 885: 173450, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32739174

RESUMO

Virus onslaughts continue to spread fear and cause rampage across the world every now and then. The twenty first century is yet again witnessing a gross global pandemic, Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Globally no vaccines or drug specific to COVID-19 is available. Corona viruses have been in mutual relationship with humans and other hosts over many decades though aggressive zoonotic strains have caused havoc. Zoonotic emergent corona viruses prior to SARS-COV-2 included severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), with the former leading to aggressive infectious spread and the later with high mortality rate. Although they emerged in the early period of the twenty first century, resilient biomedical and expertise in pharmaceutical domain could not appropriate any proprietary therapeutics. Studies envisaged towards curtailing their spread employed different stages of the virus life cycle with all zoonotic coronaviruses (CoVs) sharing genomic and structural similarities. Hence the strategies against SARS-CoV and MERS-CoV could prove effective against the recent outbreak of SAR-CoV-2. The review unravels key events involved in the lifecycle of SARS-CoV-2 while highlighting the possible avenues of therapy. The review also holds the scope in better understanding a broad-spectrum antivirals, monoclonal antibodies and small molecule inhibitors against viral glycoproteins, host cell receptor, viral mRNA synthesis, RNA-dependent RNA polymerase (RdRp) and viral proteases in order to design and develop antiviral drugs for SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Descoberta de Drogas , Terapia de Alvo Molecular/métodos , Pneumonia Viral/tratamento farmacológico , Animais , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , COVID-19 , Infecções por Coronavirus/diagnóstico , Humanos , Pandemias , Pneumonia Viral/diagnóstico , SARS-CoV-2
4.
Int J Biol Macromol ; 110: 558-566, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29402456

RESUMO

Qualitative 2D gel-electrophoresis (2DE) protein profiling for osteoarthritis (OA) and rheumatoid arthritis (RA) is challenging because of selective protein loss due to discrepancies in protein precipitation methodologies. Thus, we aimed at developing qualitative protein representation from OA/RA articular cartilage without protein precipitation towards identification of clinically relevant proteins. Chondroitinase digested human articular cartilages from RA patients were subjected to protein extraction using guanidinium hydrochloride (GuHCl) or 8 M urea with 10 or 2% ASB-14-4 or 0.45 M urea with 2% ASB-14-4 with cetylpyridinium chloride (CPC). The GuHCl extract is further protein precipitated with acetone or ammonium acetate-methanol or centricon-fractionated using 100 kDa cut filters and protein precipitated using ethanol. Processed extracts were subjected to 2DE to identify protein profiles. Poor proteins representations were observed in 2D gels with protein precipitated samples compared to qualitative protein representations seen in 2D gels of 0.45 M urea and 2%ASB-14-4 extraction procedure reproducibly. The strategy circumventing protein precipitation generated qualitative 2D gels. RA vs OA gel comparison showed elevated prolargin levels in RA with biglycan levels remaining unaltered. Up regulation of prolargin in RA suggests the likelihood of an adaptive mechanism to control the increased osteoclastogenesis in RA and may have therapeutic value in controlling the disease.


Assuntos
Artrite Reumatoide/metabolismo , Cartilagem Articular/metabolismo , Proteínas da Matriz Extracelular/biossíntese , Glicoproteínas/biossíntese , Regulação para Cima , Artrite Reumatoide/patologia , Cartilagem Articular/química , Cartilagem Articular/patologia , Proteínas da Matriz Extracelular/química , Feminino , Glicoproteínas/química , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA