Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38617358

RESUMO

Surgeries and trauma result in traumatic and iatrogenic nerve damage that can result in a debilitating condition that approximately affects 189 million individuals worldwide. The risk of nerve injury during oncologic surgery is increased due to tumors displacing normal nerve location, blood turbidity, and past surgical procedures, which complicate even an experienced surgeon's ability to precisely locate vital nerves. Unfortunately, there is a glaring absence of contrast agents to assist surgeons in safeguarding vital nerves. To address this unmet clinical need, we leveraged the abundant expression of the voltage-gated sodium channel 1.7 (NaV1.7) as an intraoperative marker to access peripheral nerves in vivo, and visualized nerves for surgical guidance using a fluorescently-tagged version of a potent NaV1.7-targeted peptide, Tsp1a, derived from a Peruvian tarantula. We characterized the expression of NaV1.7 in sensory and motor peripheral nerves across mouse, primate, and human specimens and demonstrated universal expression. We synthesized and characterized a total of 10 fluorescently labeled Tsp1a-peptide conjugates to delineate nerves. We tested the ability of these peptide-conjugates to specifically accumulate in mouse nerves with a high signal-to-noise ratio in vivo. Using the best-performing candidate, Tsp1a-IR800, we performed thyroidectomies in non-human primates and demonstrated successful demarcation of the recurrent laryngeal and vagus nerves, which are commonly subjected to irreversible damage. The ability of Tsp1a to enhance nerve contrast during surgery provides opportunities to minimize nerve damage and revolutionize standards of care across various surgical specialties.

2.
Biomedicines ; 11(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37892973

RESUMO

Drugs with a long residence time at their target sites are often more efficacious in disease treatment. The mechanism, however, behind prolonged retention at the site of action is often difficult to understand for non-covalent agents. In this context, we focus on epichaperome agents, such as zelavespib and icapamespib, which maintain target binding for days despite rapid plasma clearance, minimal retention in non-diseased tissues, and rapid metabolism. They have shown significant therapeutic value in cancer and neurodegenerative diseases by disassembling epichaperomes, which are assemblies of tightly bound chaperones and other factors that serve as scaffolding platforms to pathologically rewire protein-protein interactions. To investigate their impact on epichaperomes in vivo, we conducted pharmacokinetic and target occupancy measurements for zelavespib and monitored epichaperome assemblies biochemically in a mouse model. Our findings provide evidence of the intricate mechanism through which zelavespib modulates epichaperomes in vivo. Initially, zelavespib becomes trapped when epichaperomes bound, a mechanism that results in epichaperome disassembly, with no change in the expression level of epichaperome constituents. We propose that the initial trapping stage of epichaperomes is a main contributing factor to the extended on-target residence time observed for this agent in clinical settings. Zelavespib's residence time in tumors seems to be dictated by target disassembly kinetics rather than by frank drug-target unbinding kinetics. The off-rate of zelavespib from epichaperomes is, therefore, much slower than anticipated from the recorded tumor pharmacokinetic profile or as determined in vitro using diluted systems. This research sheds light on the underlying processes that make epichaperome agents effective in the treatment of certain diseases.

3.
Nat Biomed Eng ; 7(8): 1028-1039, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37400715

RESUMO

In conventional positron emission tomography (PET), only one radiotracer can be imaged at a time, because all PET isotopes produce the same two 511 keV annihilation photons. Here we describe an image reconstruction method for the simultaneous in vivo imaging of two PET tracers and thereby the independent quantification of two molecular signals. This method of multiplexed PET imaging leverages the 350-700 keV range to maximize the capture of 511 keV annihilation photons and prompt γ-ray emission in the same energy window, hence eliminating the need for energy discrimination during reconstruction or for signal separation beforehand. We used multiplexed PET to track, in mice with subcutaneous tumours, the biodistributions of intravenously injected [124I]I-trametinib and 2-deoxy-2-[18F]fluoro-D-glucose, [124I]I-trametinib and its nanoparticle carrier [89Zr]Zr-ferumoxytol, and the prostate-specific membrane antigen (PSMA) and infused PSMA-targeted chimaeric antigen receptor T cells after the systemic administration of [68Ga]Ga-PSMA-11 and [124I]I. Multiplexed PET provides more information depth, gives new uses to prompt γ-ray-emitting isotopes, reduces radiation burden by omitting the need for an additional computed-tomography scan and can be implemented on preclinical and clinical systems without any modifications in hardware or image acquisition software.


Assuntos
Elétrons , Tomografia por Emissão de Pósitrons , Masculino , Animais , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos do Iodo , Tomografia Computadorizada por Raios X
4.
Nat Cancer ; 4(5): 699-715, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37038004

RESUMO

Tumor expression of prostate-specific membrane antigen (PSMA) is lost in 15-20% of men with castration-resistant prostate cancer (CRPC), yet the underlying mechanisms remain poorly defined. In androgen receptor (AR)-positive CRPC, we observed lower PSMA expression in liver lesions versus other sites, suggesting a role of the microenvironment in modulating PSMA. PSMA suppression was associated with promoter histone 3 lysine 27 methylation and higher levels of neutral amino acid transporters, correlating with 18F-fluciclovine uptake on positron emission tomography imaging. While PSMA is regulated by AR, we identified a subset of AR-negative CRPC with high PSMA. HOXB13 and AR co-occupancy at the PSMA enhancer and knockout models point to HOXB13 as an upstream regulator of PSMA in AR-positive and AR-negative prostate cancer. These data demonstrate how PSMA expression is differentially regulated across metastatic lesions and in the context of the AR, which may inform selection for PSMA-targeted therapies and development of complementary biomarkers.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Próstata/metabolismo , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Microambiente Tumoral
5.
Molecules ; 28(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37049648

RESUMO

The high potency of the tetrahydrofuran-containing acetogenins (THF-ACGs) against a broad range of human cancer cell lines has stimulated interest in structurally simpler mimetics. In this context, we have previously reported THF-ACG mimetics in which the THF and butenolide moieties of a mono-THF-ACG were replaced with carbohydrate and thiophene residues, respectively. In the present study, towards the targeting of these carbohydrate analogues to prostate cancer (PCa), we synthesized prodrugs in which a parent thiophene or butenolide congener was conjugated through a self-immolative linker to 2-[3-(1,3-dicarboxypropyl)ureido] pentanedioic acid (DUPA), a highly specific ligand for prostate-specific membrane antigen (PSMA), which is overexpressed on prostate tumors. Both prodrugs were found to be more active against receptor positive LNCaP than receptor-negative PC-3 cells, with 2.5 and 12 times greater selectivity for the more potent thiophene analog and the less active butenolide congener, respectively. This selectivity for LNCaP over PC-3 contrasted with the behavior of the parent drugs, which showed similar or significantly higher activity for PC-3 compared to LNCaP. These data support the notion that higher activity of these DUPA-derived prodrugs against LNCaP cells is connected to their binding to PSMA and suggest that the conjugation of PSMA ligands to this family of cytotoxic agents may be effective for targeting them to PCa.


Assuntos
Pró-Fármacos , Neoplasias da Próstata , Masculino , Humanos , Acetogeninas/farmacologia , Antígenos de Superfície/metabolismo , Neoplasias da Próstata/patologia , Furanos/farmacologia , Carboidratos , Tiofenos , Linhagem Celular Tumoral
6.
Int J Radiat Biol ; 99(1): 70-76, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-32552309

RESUMO

PURPOSE: 123I-MAPi, a novel PARP1-targeted Auger radiotherapeutic has shown promising results in pre-clinical glioma model. Currently, 123I-MAPi is synthesized using multistep synthesis that results in modest yields and low molar activities (MA) that limits the ability to translate this technology for human studies where high doses are administered. Therefore, new methods are needed to synthesize 123I-MAPi in high activity yields (AY) and improved MA to facilitate clinical translation and multicenter trials. MATERIALS AND METHODS: 123I-MAPi was prepared in a single step via 123I-iododetannylation of the corresponding tributylstannane precursor. In vitro internalization assay, subcellular fractionation and confocal microscopy where used to evaluate the performance of 123I-MAPi in a small cell lung cancer model. RESULTS: 123I-MAPi was synthesized in a single step from the corresponding stannane precursor in AY of 45 ± 2% and MA of 11.8 ± 4.8 GBq µmol-1. In vitro in LX22 cells showed rapid internalization (5 min) with accumulation found predominantly in the membrane, nucleus and chromatin of the cell as determined by subcellular fractionation. CONCLUSIONS: Here, we have developed an improved radiosynthesis of 123I-MAPi, an Auger theranostic agent. This process was achieved using a single step, 123I-iododestannylation reaction from the corresponding stannane precursor in good AY and MA. 123I-MAPi was evaluated in vitro in a small cell lung cancer model with high PARP expression, rapid internalization and high nuclear uptake shown.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Medicina de Precisão , Elétrons
7.
bioRxiv ; 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36482968

RESUMO

The sense of smell (olfaction) is one of the most important senses for animals including humans. Despite significant advances in the understanding mechanism of olfaction, currently, there are no objective non-invasive methods that can identify loss of smell. Covid-19-related loss of smell has highlighted the need to develop methods that can identify loss of olfaction. Voltage-gated sodium channel 1.7 (NaV1.7) plays a critical role in olfaction by aiding the signal propagation to the olfactory bulb. We have identified several conditions such as chronic inflammation and viral infections such as Covid-19 that lead to loss of smell correlate with downregulation of NaV1.7 expression at transcript and protein levels in the olfactory epithelium. Leveraging this knowledge, we have developed a novel fluorescent probe Tsp1a-IR800 that targets NaV1.7. Using fluorescence imaging we can objectively measure the loss of sense of smell in live animals non-invasively. We also demonstrate that our non-invasive method is semiquantitative because the loss of fluorescence intensity correlates with the level of smell loss. Our results indicate, that our probe Tsp1a-IR800, can objectively diagnose anosmia in animal and human subjects using infrared fluorescence. We believe this method to non-invasively diagnose loss of smell objectively is a significant advancement in relation to current methods that rely on highly subjective behavioral studies and can aid in studying olfaction loss and the development of therapeutic interventions.

8.
Carbohydr Res ; 521: 108671, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36113243

RESUMO

The THF containing acetogenin 4-deoxyannonmontacin (4-DAN) has attracted interest for its potent cytotoxicity against a broad range of human tumor cell lines, and relatively simple structure. Herein is described the synthesis and cytotoxicity of C-10 epimers of 4-DAN and analogues thereof comprising carbohydrate and thiophene substitutes for the THF and butenolide moieties respectively. The key synthetic ploy was the union of THF and butenolide segments or their substitutes, via an alkene cross metathesis. The different analogues showed cytotoxicity in the low micromolar to nanomolar range against the human prostate cancer cell lines LNCaP and PC3. A relatively simple mannose-linked thiophene analog was found to be similar in activity to 4-DAN.


Assuntos
Antineoplásicos , Neoplasias da Próstata , 4-Butirolactona/análogos & derivados , Acetogeninas/farmacologia , Alcenos/química , Antineoplásicos/química , Carboidratos , Linhagem Celular Tumoral , Humanos , Masculino , Manose , Neoplasias da Próstata/tratamento farmacológico , Tiofenos , Tricotecenos
9.
Proc Natl Acad Sci U S A ; 119(27): e2203820119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759660

RESUMO

Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer with limited meaningful treatment options. NEPC lesions uniquely express delta-like ligand 3 (DLL3) on their cell surface. Taking advantage of DLL3 overexpression, we developed and evaluated lutetium-177 (177Lu)-labeled DLL3-targeting antibody SC16 (177Lu-DTPA-SC16) as a treatment for NEPC. SC16 was functionalized with DTPA-CHX-A" chelator and radiolabeled with 177Lu to produce 177Lu-DTPA-SC16. Specificity and selectivity of 177Lu-DTPA-SC16 were evaluated in vitro and in vivo using NCI-H660 (NEPC, DLL3-positive) and DU145 (adenocarcinoma, DLL3-negative) cells and xenografts. Dose-dependent treatment efficacy and specificity of 177Lu-DTPA-SC16 radionuclide therapy were evaluated in H660 and DU145 xenograft-bearing mice. Safety of the agent was assessed by monitoring hematologic parameters. 177Lu-DTPA-SC16 showed high tumor uptake and specificity in H660 xenografts, with minimal uptake in DU145 xenografts. At all three tested doses of 177Lu-DTPA-SC16 (4.63, 9.25, and 27.75 MBq/mouse), complete responses were observed in H660-bearing mice; 9.25 and 27.75 MBq/mouse doses were curative. Even the lowest tested dose proved curative in five (63%) of eight mice, and recurring tumors could be successfully re-treated at the same dose to achieve complete responses. In DU145 xenografts, 177Lu-DTPA-SC16 therapy did not inhibit tumor growth. Platelets and hematocrit transiently dropped, reaching nadir at 2 to 3 wk. This was out of range only in the highest-dose cohort and quickly recovered to normal range by week 4. Weight loss was observed only in the highest-dose cohort. Therefore, our data demonstrate that 177Lu-DTPA-SC16 is a potent and safe radioimmunotherapeutic agent for testing in humans with NEPC.


Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma Neuroendócrino , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Neoplasias da Próstata , Radioimunoterapia , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/uso terapêutico , Carcinoma Neuroendócrino/radioterapia , Quelantes/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Ligantes , Lutécio , Masculino , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Ácido Pentético/química , Neoplasias da Próstata/radioterapia , Radioisótopos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
STAR Protoc ; 3(2): 101318, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496791

RESUMO

Epichaperomes are disease-associated pathologic scaffolds composed of tightly bound chaperones and co-chaperones. They provide opportunities for precision medicine where aberrant protein-protein interaction networks, rather than a single protein, are detected and targeted. This protocol describes the synthesis and characterization of two 124I-labeled epichaperome probes, [124I]-PU-H71 and [124I]-PU-AD, both which have translated to clinical studies. It shows specific steps in the use of these reagents to image and quantify epichaperome-positivity in tumor bearing mice through positron emission tomography. For complete details on the use and execution of this protocol, please refer to Bolaender et al. (2021), Inda et al. (2020), and Pillarsetty et al. (2019).


Assuntos
Neoplasias , Mapas de Interação de Proteínas , Animais , Radioisótopos do Iodo , Camundongos , Neoplasias/patologia , Tomografia Computadorizada por Raios X
11.
Pharmacol Res Perspect ; 10(2): e00898, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257504

RESUMO

Previously published digital autoradiography of 3 H-labeled capecitabine reveals a near-uniform distribution of activity throughout a murine pancreatic model. This is in contrast both to 14 C-labeled gemcitabine, and established expectations, as the dense stroma of pancreatic cancer is understood to inhibit drug penetration. Capecitabine is a pro-drug for 5 FU. The positioning of the radiolabel on capecitabine leaves open the possibility that much of the autoradiographic signal is generated by nontoxic compounds. Studies were performed on tumors derived via organoid culture from a murine KPC tumor. As before, we performed autoradiography comparing 3 H capecitabine to the gemcitabine analog 18 F-FAC. The metabolism of capecitabine in this model was studied through LC-MS of tumor tissue. The autoradiographs confirmed that the 3 H label from capecitabine was much more uniformly distributed through the tumor than the 18 F from the gemcitabine analog. LC-MS revealed that approximately 75% of the molar mass of capecitabine had been converted into 5 FU or pre-5 FU compounds. The remainder had been converted into nontoxic species. Therapeutically relevant capecitabine metabolites achieve a relatively even distribution in this pancreatic cancer model, in contrast to the gemcitabine analog 18 F-FAC. In a human xenograft model, (BxPC3), the 3 H label from capecitabine was also uniformly spread across the tumor autoradiographs. However, at 2 h post-administration the metabolism of capecitabine had proceeded further and the bulk of the agent was in the form of nontoxic species.


Assuntos
Neoplasias Pancreáticas , Pró-Fármacos , Animais , Autorradiografia , Capecitabina , Modelos Animais de Doenças , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas
12.
Mol Cancer Ther ; 21(4): 658-666, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131877

RESUMO

Antibody-based PET (immunoPET) with radiotracers that recognize specific cells of the immune system provides an opportunity to monitor immune cell trafficking at the organismal scale. We previously reported the visualization of human CD8+ T cells, including CD8+ tumor-infiltrating lymphocytes (TIL), in mice using a humanized CD8-targeted minibody. Given the important role of CD4+ T cells in adaptive immune responses of health and disease including infections, tumors, and autoimmunity, we explored immunoPET using an anti-human-CD4 minibody. We assessed the ability of [64Cu]Cu-NOTA-IAB41 to bind to various CD4+ T-cell subsets in vitro. We also determined the effect of the CD4-targeted minibody on CD4+ T-cell abundance, proliferation, and activation state in vitro. We subsequently evaluated the ability of the radiotracer to visualize CD4+ T cells in T-cell rich organs and orthotopic brain tumors in vivo. For the latter, we injected the [64Cu]Cu-NOTA-IAB41 radiotracer into humanized mice that harbored intracranial patient-derived glioblastoma (GBM) xenografts and performed in vivo PET, ex vivo autoradiography, and anti-CD4 IHC on serial brain sections. [64Cu]Cu-NOTA-IAB41 specifically detects human CD4+ T cells without impacting their abundance, proliferation, and activation. In humanized mice, [64Cu]Cu-NOTA-IAB41 can visualize various peripheral tissues in addition to orthotopically implanted GBM tumors. [64Cu]Cu-NOTA-IAB41 is able to visualize human CD4+ T cells in humanized mice and can provide noninvasive quantification of CD4+ T-cell distribution on the organismal scale.


Assuntos
Linfócitos T CD4-Positivos , Radioisótopos de Cobre , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Tomografia por Emissão de Pósitrons/métodos
13.
Clin Cancer Res ; 28(7): 1391-1401, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35046060

RESUMO

PURPOSE: Small cell lung cancer (SCLC) is an exceptionally lethal form of lung cancer with limited treatment options. Delta-like ligand 3 (DLL3) is an attractive therapeutic target as surface expression is almost exclusive to tumor cells. EXPERIMENTAL DESIGN: We radiolabeled the anti-DLL3 mAb SC16 with the therapeutic radioisotope, Lutetium-177. [177Lu]Lu-DTPA-CHX-A"-SC16 binds to DLL3 on SCLC cells and delivers targeted radiotherapy while minimizing radiation to healthy tissue. RESULTS: [177Lu]Lu-DTPA-CHX-A"-SC16 demonstrated high tumor uptake with DLL3-target specificity in tumor xenografts. Dosimetry analyses of biodistribution studies suggested that the blood and liver were most at risk for toxicity from treatment with high doses of [177Lu]Lu-DTPA-CHX-A"-SC16. In the radioresistant NCI-H82 model, survival studies showed that 500 µCi and 750 µCi doses of [177Lu]Lu-DTPA-CHX-A"-SC16 led to prolonged survival over controls, and 3 of the 8 mice that received high doses of [177Lu]Lu-DTPA-CHX-A"-SC16 had pathologically confirmed complete responses (CR). In the patient-derived xenograft model Lu149, all doses of [177Lu]Lu-DTPA-CHX-A"-SC16 markedly prolonged survival. At the 250 µCi and 500 µCi doses, 5 of 10 and 7 of 9 mice demonstrated pathologically confirmed CRs, respectively. Four of 10 mice that received 750 µCi of [177Lu]Lu-DTPA-CHX-A"-SC16 demonstrated petechiae severe enough to warrant euthanasia, but the remaining 6 mice demonstrated pathologically confirmed CRs. IHC on residual tissues from partial responses confirmed retained DLL3 expression. Hematologic toxicity was dose-dependent and transient, with full recovery within 4 weeks. Hepatotoxicity was not observed. CONCLUSIONS: Together, the compelling antitumor efficacy, pathologic CRs, and mild and transient toxicity profile demonstrate strong potential for clinical translation of [177Lu]Lu-DTPA-CHX-A"-SC16.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Linhagem Celular Tumoral , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Neoplasias Pulmonares/radioterapia , Proteínas de Membrana/genética , Camundongos , Radioimunoterapia , Carcinoma de Pequenas Células do Pulmão/radioterapia , Distribuição Tecidual
14.
J Nucl Med ; 63(9): 1401-1407, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35058323

RESUMO

Treatment-induced neuroendocrine prostate cancer (NEPC) is a lethal subtype of castration-resistant prostate cancer. Using the 89Zr-labeled delta-like ligand 3 (DLL3) targeting antibody SC16 (89Zr-desferrioxamine [DFO]-SC16), we have developed a PET agent to noninvasively identify the presence of DLL3-positive NEPC lesions. Methods: Quantitative polymerase chain reaction and immunohistochemistry were used to compare relative levels of androgen receptor (AR)-regulated markers and the NEPC marker DLL3 in a panel of prostate cancer cell lines. PET imaging with 89Zr-DFO-SC16, 68Ga-PSMA-11, and 68Ga-DOTATATE was performed on H660 NEPC-xenografted male nude mice. 89Zr-DFO-SC16 uptake was corroborated by biodistribution studies. Results: In vitro studies demonstrated that H660 NEPC cells are positive for DLL3 and negative for AR, prostate-specific antigen, and prostate-specific membrane antigen (PSMA) at both the transcriptional and the translational levels. PET imaging and biodistribution studies confirmed that 89Zr-DFO-SC16 uptake is restricted to H660 xenografts, with background uptake in non-NEPC lesions (both AR-dependent and AR-independent). Conversely, H660 xenografts cannot be detected with imaging agents targeting PSMA (68Ga-PSMA-11) or somatostatin receptor subtype 2 (68Ga-DOTATATE). Conclusion: These studies demonstrated that H660 NEPC cells selectively express DLL3 on their cell surface and can be noninvasively identified with 89Zr-DFO-SC16.


Assuntos
Carcinoma Neuroendócrino , Neoplasias da Próstata , Animais , Carcinoma Neuroendócrino/metabolismo , Linhagem Celular Tumoral , Desferroxamina/química , Isótopos de Gálio , Radioisótopos de Gálio , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Masculino , Proteínas de Membrana , Camundongos , Camundongos Nus , Imagem Molecular , Tomografia por Emissão de Pósitrons , Próstata/patologia , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/patologia , Cintilografia , Compostos Radiofarmacêuticos/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Somatostatina/metabolismo , Distribuição Tecidual
15.
Commun Biol ; 4(1): 1333, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824367

RESUMO

Cancer cell plasticity due to the dynamic architecture of interactome networks provides a vexing outlet for therapy evasion. Here, through chemical biology approaches for systems level exploration of protein connectivity changes applied to pancreatic cancer cell lines, patient biospecimens, and cell- and patient-derived xenografts in mice, we demonstrate interactomes can be re-engineered for vulnerability. By manipulating epichaperomes pharmacologically, we control and anticipate how thousands of proteins interact in real-time within tumours. Further, we can essentially force tumours into interactome hyperconnectivity and maximal protein-protein interaction capacity, a state whereby no rebound pathways can be deployed and where alternative signalling is supressed. This approach therefore primes interactomes to enhance vulnerability and improve treatment efficacy, enabling therapeutics with traditionally poor performance to become highly efficacious. These findings provide proof-of-principle for a paradigm to overcome drug resistance through pharmacologic manipulation of proteome-wide protein-protein interaction networks.


Assuntos
Epigênese Genética , Genoma , Chaperonas Moleculares/genética , Neoplasias/genética , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Animais , Feminino , Xenoenxertos , Humanos , Camundongos , Transdução de Sinais
16.
Nat Commun ; 12(1): 4669, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344873

RESUMO

Diseases are a manifestation of how thousands of proteins interact. In several diseases, such as cancer and Alzheimer's disease, proteome-wide disturbances in protein-protein interactions are caused by alterations to chaperome scaffolds termed epichaperomes. Epichaperome-directed chemical probes may be useful for detecting and reversing defective chaperomes. Here we provide structural, biochemical, and functional insights into the discovery of epichaperome probes, with a focus on their use in central nervous system diseases. We demonstrate on-target activity and kinetic selectivity of a radiolabeled epichaperome probe in both cells and mice, together with a proof-of-principle in human patients in an exploratory single group assignment diagnostic study (ClinicalTrials.gov Identifier: NCT03371420). The clinical study is designed to determine the pharmacokinetic parameters and the incidence of adverse events in patients receiving a single microdose of the radiolabeled probe administered by intravenous injection. In sum, we introduce a discovery platform for brain-directed chemical probes that specifically modulate epichaperomes and provide proof-of-principle applications in their use in the detection, quantification, and modulation of the target in complex biological systems.


Assuntos
Sistema Nervoso Central/metabolismo , Chaperonas Moleculares/metabolismo , Mapeamento de Interação de Proteínas/instrumentação , Proteoma/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Camundongos , Sondas Moleculares/química , Sondas Moleculares/farmacocinética , Sondas Moleculares/farmacologia , Sondas Moleculares/uso terapêutico , Tomografia por Emissão de Pósitrons
17.
Mol Cancer Ther ; 20(10): 2026-2034, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34349003

RESUMO

Patients with pancreatic ductal adenocarcinoma (PDAC) do not benefit from immune checkpoint blockade (ICB) along the PD-1/PD-L1 axis. Variable PD-L1 expression in PDAC indicates a potential access issue of PD-L1-targeted therapy. To monitor target engagement of PD-L1-targeted therapy, we generated a PD-L1-targeted PET tracer labeled with zirconium-89 (89Zr). As the MAPK signaling pathway (MEK and ERK) is known to modulate PD-L1 expression in other tumor types, we used [89Zr]Zr-DFO-anti-PD-L1 as a tool to noninvasively assess whether manipulation of the MAPK signaling cascade could be leveraged to modulate PD-L1 expression and thereby immunotherapeutic outcomes in PDAC. In this study, we observed that the inhibition of MEK or ERK is sufficient to increase PD-L1 expression, which we hypothesized could be leveraged for anti-PD-L1 immune checkpoint therapy. We found that the combination of ERK inhibition and anti-PD-L1 therapy corresponded with a significant improvement of overall survival in a syngeneic mouse model of PDAC. Furthermore, IHC analysis indicates that the survival benefit may be CD8+ T-cell mediated. The therapeutic and molecular imaging tool kit developed could be exploited to better structure clinical trials and address the therapeutic gaps in challenging malignancies such as PDAC.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Carcinoma Ductal Pancreático/tratamento farmacológico , Sinergismo Farmacológico , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose , Antígeno B7-H1/imunologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Quimioterapia Combinada , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
19.
J Nucl Med ; 62(2): 195-200, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32646874

RESUMO

18F-FAC (2'-deoxy-2'-18F-fluoro-ß-d-arabinofuranosylcytosine) has close structural similarity to gemcitabine and thus offers the potential to image drug delivery to tumors. We compared tumor 18F-FAC PET images with 14C-gemcitabine levels, established ex vivo, in 3 mouse models of pancreatic cancer. We further modified tumor gemcitabine levels with injectable PEGylated recombinant human hyaluronidase (PEGPH20) to test whether changes in gemcitabine would be tracked by 18F-FAC. Methods:18F-FAC was synthesized as described previously. Three patient-derived xenograft (PDX) models were grown in the flanks of NSG mice. Mice were given PEGPH20 or vehicle intravenously 24 h before coinjection of 18F-FAC and 14C-gemcitabine. Animals were euthanized and imaged 1 h after tracer administration. Tumor and muscle uptake of both 18F-FAC and 14C-gemcitabine was obtained ex vivo. The efficacy of PEPGPH20 was validated through staining with hyaluronic acid binding protein. Additionally, an organoid culture, initiated from a KPC (Pdx-1 Cre LSL-KrasG12D LSL-p53R172H) tumor, was used to generate orthotopically growing tumors in C57BL/6J mice, and these tumors were then serially transplanted. Animals were injected with PEGPH20 and 14C-gemcitabine as described above to validate increased drug uptake by ex vivo assay. PET/MR images were obtained using a PET insert on a 7-T MR scanner. Animals were imaged immediately before injection with PEGPH20 and again 24 h later. Results: Tumor-to-muscle ratios of 14C-gemcitabine and 18F-FAC correlated well across all PDX models and treatments (R2 = 0.78). There was a significant increase in the tumor PET signal in PEGPH20-treated PDX animals, and this signal was matched in ex vivo counts for 2 of 3 models. In KPC-derived tumors, PEGPH20 raised 14C-gemcitabine levels (tumor-to-muscle ratio of 1.9 vs. 2.4, control vs. treated, P = 0.013). PET/MR 18F-FAC images showed a 12% increase in tumor 18F-FAC uptake after PEGPH20 treatment (P = 0.023). PEGPH20-treated animals uniformly displayed clear reductions in hyaluronic acid staining. Conclusion:18F-FAC PET was shown to be a good surrogate for gemcitabine uptake and, when combined with MR, to successfully determine drug uptake in tumors growing in the pancreas. PEGPH20 had moderate effects on tumor uptake of gemcitabine.


Assuntos
Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/metabolismo , Tomografia por Emissão de Pósitrons , Animais , Desoxicitidina/química , Desoxicitidina/metabolismo , Desoxicitidina/uso terapêutico , Modelos Animais de Doenças , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Hialuronoglucosaminidase/metabolismo , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Gencitabina
20.
Artigo em Inglês | MEDLINE | ID: mdl-33283132

RESUMO

PURPOSE: Epichaperome network maintenance is vital to survival of tumors that express it. PU-H71 is an epichaperome inhibitor that binds to the ATP-binding site of HSP90 and has demonstrated antitumor activity in breast cancer xenograft models and clinical safety in patients. PU-positron emission tomography (PET) is a theragnostic imaging tool that allows visualization of the epichaperome target. In this phase Ib trial, we present safety and tolerability for PU-H71 plus nab-paclitaxel in HER2-negative patients with metastatic breast cancer (MBC) and the utility of PU-PET as a noninvasive predictive biomarker. METHODS: We performed a 3 + 3 dose-escalation study with escalating PU-H71 doses and standard nab-paclitaxel. The primary objective was to establish safety and determine maximum tolerated dose (MTD)/recommended phase 2 dose. Secondary objectives were to assess pharmacokinetics and clinical efficacy. Patients could enroll in a companion PU-PET protocol to measure epichaperome expression before treatment initiation to allow exploratory correlation with treatment benefit. RESULTS: Of the 12 patients enrolled, dose-limiting toxicity occurred in one patient (G3 neutropenic fever) at dose level 1; MTD of PU-H71 was 300 mg/m2 plus nab-paclitaxel 260 mg/m2 administered every 3 weeks. Common toxicities included diarrhea, fatigue, peripheral neuropathy, and nausea. PU-H71 systemic exposure was not altered by nab-paclitaxel administration. Two of 12 patients had partial response (overall response rate, 17%) and the clinical benefit rate was 42% (5 of 12). Time to progression was associated with baseline epichaperome positivity and PU-H71 peak standard uptake value (SUV), with more durable disease control observed with high epichaperome levels. CONCLUSION: The combination of PU-H71 and nab-paclitaxel was well tolerated, with evidence of clinical activity. More durable disease control without progression was observed in patients with high baseline epichaperome expression. A phase II trial of this combination with PU-PET as a companion diagnostic for patient selection is currently planned.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA