Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(26): 14480-14488, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32568338

RESUMO

The need for magnetic 2D materials that are stable to the enviroment and have high Curie temperatures is very important for various electronic and spintronic applications. We have found that two-dimensional porphyrin-type aza-conjugated microporous polymer crystals are such a material (Fe-aza-CMPs). Fe-aza-CMPs are stable to CO, CO2, and O2 atmospheres and show unusual adsorption, electronic, and magnetic properties. Indeed, they are semiconductors with small energy band gaps ranging from 0.27 eV to 0.626 eV. CO, CO2, and O2 molecules can be attached in three different ways where single, double, or triple molecules are bound to iron atoms in Fe-aza-CMPs. For different attachment configurations we find that for CO and CO2 a uniform distribution of the molecules is most energetically favorable while for O2 molecules aggregation is most energetically preferable. The magnetic moments decrease from 4 to 2 to 0 for singly, doubly, triply occupied configurations for all gasses respectively. The most interesting magnetic properties are found for O2 molecules attached to the Fe-aza-CMP. For a single attachment configuration we find that an antiferromagnetic state is favorable. When two O2 molecules are attached, the calculations show the highest exchange integral with a value of J = 1071 µeV. This value has been verified by two independent methods where in the first method J is calculated by the energy difference between ferromagnetic and anitferromagnetic configurations. The second method is based on the frozen magnon approach where the magnon dispersion curve has been fitted by the Ising model. For the second method J has been estimated at J = 1100 µeV in excellent agreement with the first method.

2.
Phys Chem Chem Phys ; 21(46): 25820-25825, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31728472

RESUMO

In this work we study a low-cost two-dimensional ferromagnetic semiconductor with possible applications in biomedicine, solar cells, spintronics, and energy and hydrogen storage. From first principle calculations we describe the unique electronic, transport, optical, and magnetic properties of a π-conjugated micropore polymer (CMP) with three iron atoms placed in the middle of an isolated pore locally resembling heme complexes. This material exhibits strong Fe-localized dz2 bands. The bandgap is direct and equal to 0.28 eV. The valence band is doubly degenerate at the Γ-point and for larger k-wavevectors the HOMO band becomes flat with low contribution to charge mobility. The absorption coefficient is roughly isotropic. The conductivity is also isotropic with the nonzero contribution in the energy range 0.3-8 eV. The xy-component of the imaginary part of the dielectric tensor determines the magneto-optical Faraday and Kerr rotation. Nonvanishing rotation is observed in the interval of 0.5-5.0 eV. This material is found to be a ferromagnet of an Ising type with long-range exchange interactions with a very high magnetic moment per unit cell, m = 6 µB. The exchange integral is calculated by two independent methods: (a) from the energy difference between ferromagnetic and antiferromagnetic states and (b) from a magnon dispersion curve. In the former case Jnn = 27 µeV. In the latter case the magnon dispersion is fitted by the Ising model with the nearest and next-nearest neighbor spin interactions. From these estimations we find that Jnn = 19.5 µeV and Jnnn = -3 µeV. Despite the different nature of the calculations, the exchange integrals are only within 28% difference.

3.
Phys Chem Chem Phys ; 20(47): 29804-29810, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30465566

RESUMO

Because of the importance of ferromagnetism at room temperature, we search for new materials that can exhibit a non-vanishing magnetic moment at room temperature and at the same time can be used in spintronics. The experimental results indicate that d0 ferromagnetism without any magnetic impurities takes place in PbS films made of close-packed lead sulfide nanoparticles of 30 nm. To explain the existence of the d0 ferromagnetism, we propose a model where various PbS bulk and surface configurations of Pb-vacancies are analyzed. The bulk configurations have a zero magnetic moment while the two surface configurations with Pb vacancies with the same non-vanishing magnetic moments and lowest ground state energies contribute to the total magnetization. Based on the experimental value of the saturation magnetization, 0.2 emu g-1, we have found that the calculated Pb vacancy concentration should be about 3.5%, which is close to typical experimental values. Besides being very important for applications, there is one feature of PbS d0 ferromagnetism that makes this material special for fundamental research: PbS ferromagnetism can exhibit topologically driven spatial magnetic moment distributions (e.g., magnetic skyrmions) due to large spin-orbit coupling.

4.
Phys Chem Chem Phys ; 18(38): 26771-26776, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27711515

RESUMO

We find a large enhancement in the efficiency of CdSe quantum dot sensitized solar cells by doping with manganese. In the presence of Mn impurities in relatively small concentrations (2.3%) the photoelectric current increases by up to 190%. The average photocurrent enhancement is about 160%. This effect cannot be explained by a light absorption mechanism because the experimental and theoretical absorption spectra demonstrate that there is no change in the absorption coefficient in the presence of the Mn impurities. To explain such a large increase in the injection current we propose a tunneling mechanism of electron injection from the quantum dot LUMO state to the Zn2SnO4 (ZTO) semiconductor photoanode. The calculated enhancement is approximately equal to 150% which is very close to the experimental average value of 160%. The relative discrepancy between the calculated and experimentally measured ratios of the IPCE currents is only 6.25%. For other mechanisms (such as electron trapping, etc.) the remaining 6.25% cannot explain the large change in the experimental IPCE. Thus we have indirectly proved that electron tunneling is the major mechanism of photocurrent enhancement. This work proposes a new approach for a significant improvement in the efficiency of quantum dot sensitized solar cells.

5.
ACS Appl Mater Interfaces ; 8(42): 29110-29116, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27723288

RESUMO

Scanning tunneling microscopy is utilized to investigate the local density of states of a CH3NH3PbI3-xClx perovskite in cross-sectional geometry. Two electronic phases, 10-20 nm in size, with different electronic properties inside the CH3NH3PbI3-xClx perovskite layer are observed by the dI/dV mapping and point spectra. A power law dependence of the dI/dV point spectra is revealed. In addition, the distinct electronic phases are found to have preferential orientations close to the normal direction of the film surface. Density functional theory calculations indicate that the observed electronic phases are associated with local deviation of I/Cl ratio, rather than different orientations of the electric dipole moments in the ferroelectric phases. By comparing the calculated results with experimental data we conclude that phase A (lower contrast in dI/dV mapping at -2.0 V bias) contains a lower I/Cl ratio than that in phase B (higher contrast in dI/dV).

6.
J Chem Phys ; 137(24): 244704, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23277949

RESUMO

In this work we study the effect of internal relaxation in a (Bu(4)N)(2)Ru(dcbpyH)(2)(NCS)(2) (N719) dye molecule in a dye sensitized solar cell. Experimentally measured light intensity dependencies of short circuit current and open circuit voltage for two different types of photoanodes, ZTO (Zn(2)SnO(4)) nanorods and nanoparticles, are explained in the framework of the proposed microscopic theory. This theory is based on a density matrix equation with a Markovian relaxation term. The computational results are in favor of the fast relaxation inside the unoccupied and occupied bands rather than slow interband electron-hole recombination. The difference in experimental dependencies for ZTO nanorods and nanoparticles is explained by the difference in the electron transfer matrix elements, and therefore, the electron transfer injection constants for the different morphologies of the photoanodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA