Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 665: 720-732, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38554462

RESUMO

Carbon nanostructures derived from human hair biowaste are incorporated into polyvinylidene fluoride (PVDF) polymer to enhance the energy conversion performance of a triboelectric nanogenerator (TENG). The PVDF filled with activated carbon nanomaterial from human hair (AC-HH) exhibits improved surface charge density and photoinduced charge generation. These remarkable properties are attributed to the presence of graphene-like nanostructures in AC-HH, contributing to the augmented performance of PVDF@AC-HH TENG. The correlation of surface morphologies, surface charge potential, charge capacitance properties, and TENG electrical output of the PVDF composites at various AC-HH loading is studied and discussed. Applications of the PVDF@AC-HH TENG as a power source for micro/nanoelectronics and a movement sensor for detecting finger gestures are also demonstrated. The photoresponse property of the fabricated TENG is demonstrated and analyzed in-depth. The analysis indicates that the photoinduced charge carriers originate from the conductive reduced graphene oxide (rGO), contributing to the enhanced surface charge density of the PVDF composite film. This research introduces a novel approach to enhancing TENG performance through the utilization of carbon nanostructures derived from human biowaste. The findings of this work are crucial for the development of innovative energy-harvesting technology with multifunctionality, including power generation, motion detection, and photoresponse capabilities.


Assuntos
Carvão Vegetal , Polímeros de Fluorcarboneto , Nanoestruturas , Polivinil , Humanos , Capacitância Elétrica , Cabelo
2.
Sci Rep ; 9(1): 1494, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728432

RESUMO

Cost-effective reduced graphene oxide sheets decorated with magnetite (Fe3O4) nanoparticles (Fe3O4-rGO) are successfully fabricated via a chemical vapor deposition (CVD) technique using iron (III) nitrate as an iron precursor, with glucose and CH4 as carbon sources, and NaCl as a supporting material. TEM analysis and Raman spectroscopy reveal hierarchical nanostructures of reduced graphene oxide (rGO) decorated with Fe3O4 nanoparticles. Fe K-edge x-ray absorption near edge structure (XANES) spectra confirm that the nanoparticles are Fe3O4 with a slight shift of the pre-edge peak position toward higher energy suggesting that the fabricated Fe3O4 nanoparticles have a higher average oxidation state than that of a standard Fe3O4 compound. The hierarchical Fe3O4-rGO is found to exhibit an excellent catalytic activity toward the reduction of triiodide to iodide in a dye-sensitized solar cell (DSSC) and can deliver a solar cell efficiency of 6.65%, which is superior to a Pt-based DSSC (6.37%).

3.
J Nanosci Nanotechnol ; 18(2): 1207-1214, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448559

RESUMO

Tungsten carbide (WC) particles (~1 µm) were dispersed in DI water and dropped onto conductive glass. The resulting WC films were used as dye-sensitized solar cell (DSSC) counter electrodes. The performance of the WC DSSC based on the organic thiolate/disulfide (T-/T2) electrolyte was ~0.78%. The cell efficiency was greatly improved after decorating palladium (Pd) or platinum (Pt) nanoparticles on WC particles with a promising efficiency of ~2.15% for Pd-WC DSSC and ~4.62% for Pt-WC DSSC. The efficiency improvement of the composited (Pd-WC and Pt-WC) cells is attributed to co-functioning catalysts, the large electrode interfacial area and a low charge-transfer resistance at the electrolyte/counter electrode interface.

4.
Sci Rep ; 5: 15230, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26458745

RESUMO

Mangosteen peel is an inedible portion of a fruit. We are interested in using these residues as components of a dye sensitized solar cell (DSSC). Carbonized mangosteen peel was used with mangosteen peel dye as a natural counter electrode and a natural photosensitizer, respectively. A distinctive mesoporous honeycomb-like carbon structure with a rough nanoscale surface was found in carbonized mangosteen peels. The efficiency of a dye sensitized solar cell using carbonized mangosteen peel was compared to that of DSSCs with Pt and PEDOT-PSS counter electrodes. The highest solar conversion efficiency (2.63%) was obtained when using carbonized mangosteen peel and an organic disulfide/thiolate (T2/T(-)) electrolyte.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA