Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 13: 910413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246641

RESUMO

Enteric methane emissions from ruminants account for ∼35% of New Zealand's greenhouse gas emissions. This poses a significant threat to the pastoral sector. Breeding has been shown to successfully lower methane emissions, and genomic prediction for lowered methane emissions has been introduced at the national level. The long-term genetic impacts of including low methane in ruminant breeding programs, however, are unknown. The success of the New Zealand sheep industry is currently heavily reliant on the prolificacy, fecundity and survival of adult ewes. The objective of this study was to determine genetic and phenotypic correlations between adult maternal ewe traits (live weight, body condition score, number of lambs born, litter survival to weaning, pregnancy scanning and fleece weight), faecal and Nematodirus egg counts and measures of methane in respiration chambers. More than 9,000 records for methane from over 2,200 sheep measured in respiration chambers were collected over 10 years. Sheep were fed on a restricted diet calculated as approximately twice the maintenance. Methane measures were converted to absolute daily emissions of methane measured in g per day (CH4/day). Two measures of methane yield were recorded: the ratio of CH4 to dry matter intake (g CH4/kg DMI; CH4/DMI) and the ratio of CH4 to total gas emissions (CH4/(CH4 + CO2)). Ewes were maintained in the flocks for at least two parities. Non-methane trait data from over 8,000 female relatives were collated to estimate genetic correlations. Results suggest that breeding for low CH4/DMI is unlikely to negatively affect faecal egg counts, adult ewe fertility and litter survival traits, with no evidence for significant genetic correlations. Fleece weight was unfavourably (favourably) correlated with CH4/DMI (rg = -0.21 ± 0.09). Live weight (rg = 0.3 ± 0.1) and body condition score (rg = 0.2 ± 0.1) were positively correlated with methane yield. Comparing the two estimates of methane yield, CH4/DMI had lower heritability and repeatability. However, correlations of both measures with adult ewe traits were similar. This suggests that breeding is a suitable mitigation strategy for lowering methane yield, but wool, live weight and fat deposition traits may be affected over time and should be monitored.

2.
J Anim Sci ; 97(7): 2711-2724, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31212318

RESUMO

Animal-to-animal variation in methane (CH4) emissions determined in respiration chambers has a genetic basis, but rapid phenotyping methods that can be applied on-farm are required to enable increased genetic progress by the farming industry. Fermentation of carbohydrates in the rumen results in the formation of VFA with hydrogen (H2) as a byproduct that is used for CH4 formation. Generally, fermentation pathways leading to acetate are associated with the most H2 production, less H2 formation is associated with butyrate production, and propionate and valerate production are associated with reduced H2 production. Therefore, VFA may constitute a potential correlated proxy for CH4 emissions to enable high-throughput animal screening. The objective of the present study was to determine the genetic parameters for ruminal and plasma VFA concentrations in sheep fed alfalfa (Medicago sativa L.) pellets and their genetic (rg) and phenotypic (rp) correlations with CH4 emissions. Measurements of CH4 emissions in respiration chambers and ruminal (stomach tubing 18 h from last meal) and blood plasma (3 h post-feeding) VFA concentrations were made on 1,538 lambs from 5 birth years (2007 and 2009 to 2012) aged between 5 and 10 mo, while the animals were fed alfalfa pellets at 2.0 times maintenance requirements in 2 equal size meals (0900 and 1500 h). These measurements were repeated twice (rounds) 14 d apart. Mean (± SD) CH4 production was 24.4 ± 3.08 g/d, and the mean CH4 yield was 15.8 ± 1.51 g/kg DMI. Mean concentration of total ruminal VFA was 52.2 mM, with concentrations of acetate, propionate and butyrate of 35.97, 8.83, and 4.02 mM, respectively. Ruminal total VFA concentration had heritability (h2) and repeatability estimates (± SE) of 0.24 ± 0.05 and 0.35 ± 0.03, respectively, and similar estimates were found for acetate, propionate, and butyrate. Blood plasma concentrations of VFA had much lower estimates of h2 and repeatability than ruminal VFA. Genetic correlations with CH4 yield were greatest for total concentrations of ruminal VFA and acetate, with 0.54 ± 0.12 and 0.56 ± 0.12, respectively, which were much greater than their corresponding rp. The rp and rg of ruminal VFA proportions and blood VFAs with CH4 emissions were in general lower than for ruminal VFA concentrations. However, minor ruminal VFA proportions had also moderate rg with CH4 yield. Pre-feeding concentrations of total VFA and acetate were the strongest correlated proxies to select sheep that are genetically low CH4 emitters.


Assuntos
Ácidos Graxos Voláteis/metabolismo , Medicago sativa , Metano/metabolismo , Ovinos/genética , Animais , Cruzamento , Ácidos Graxos Voláteis/sangue , Feminino , Fermentação , Hidrogênio/metabolismo , Masculino , Metano/análise , Propionatos/metabolismo , Rúmen/metabolismo , Ovinos/fisiologia
3.
Front Genet ; 9: 330, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30177952

RESUMO

Ruminants are significant contributors to the livestock generated component of the greenhouse gas, methane (CH4). The CH4 is primarily produced by the rumen microbes. Although the composition of the diet and animal intake amount have the largest effect on CH4 production and yield (CH4 production/dry matter intake, DMI), the host also influences CH4 yield. Shorter rumen feed mean retention time (MRT) is associated with higher dry matter intake and lower CH4 yield, but the molecular mechanism(s) by which the host affects CH4 production remain unclear. We integrated rumen wall transcriptome data and CH4 phenotypes from two independent experiments conducted with sheep in Australia (AUS, n = 62) and New Zealand (NZ, n = 24). The inclusion of the AUS data validated the previously identified clusters and gene sets representing rumen epithelial, metabolic and muscular functions. In addition, the expression of the cell cycle genes as a group was consistently positively correlated with acetate and butyrate concentrations (p < 0.05, based on AUS and NZ data together). The expression of a group of metabolic genes showed positive correlations in both AUS and NZ datasets with CH4 production (p < 0.05) and yield (p < 0.01). These genes encode key enzymes in the ketone body synthesis pathway and included members of the poorly characterized aldo-keto reductase 1C (AKR1C) family. Several AKR1C family genes appear to have ruminant specific evolution patterns, supporting their specialized roles in the ruminants. Combining differential gene expression in the rumen wall muscle of the shortest and longest MRT AUS animals (no data available for the NZ animals) with correlation and network analysis, we identified a set of rumen muscle genes involved in cell junctions as potential regulators of MRT, presumably by influencing contraction rates of the smooth muscle component of the rumen wall. Higher rumen expression of these genes, including SYNPO (synaptopodin, p < 0.01) and NEXN (nexilin, p < 0.05), was associated with lower CH4 yield in both AUS and NZ datasets. Unlike the metabolic genes, the variations in the expression of which may reflect the availability of rumen metabolites, the muscle genes are currently our best candidates for causal genes that influence CH4 yield.

4.
J Anim Sci ; 96(8): 3031-3042, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-29741677

RESUMO

Methane (CH4) emission traits were previously found to be heritable and repeatable in sheep fed alfalfa pellets in respiration chambers (RC). More rapid screening methods are, however, required to increase genetic progress and to provide a cost-effective method to the farming industry for maintaining the generation of breeding values in the future. The objective of the current study was to determine CH4 and carbon dioxide (CO2) emissions using several 1-h portable accumulation chamber (PAC) measurements from lambs and again as ewes while grazing ryegrass-based pasture. Many animals with PAC measurements were also measured in RC while fed alfalfa pellets at 2.0 × maintenance metabolizable energy requirements (MEm). Heritability estimates from mixed models for CH4 and CO2 production (g/d) were 0.19 and 0.16, respectively, when measured using PAC with lambs; 0.20 and 0.27, respectively, when measured using PAC with ewes; and 0.23 and 0.34, respectively, when measured using RC with lambs. For measured gas traits, repeatabilities of measurements collected 14 d apart ranged from 0.33 to 0.55 for PAC (combined lambs and ewes) and were greater at 0.65 to 0.76 for the same traits measured using RC. Genetic correlations (rg) between PAC in lambs and ewes were 0.99 for CH4, 0.93 for CH4 + CO2, and 0.85 for CH4/(CH4 + CO2), suggesting that CH4 emissions in lambs and ewes are the same trait. Genetic correlations between PAC and RC measurements were lower, at 0.62 to 0.67 for CH4 and 0.41 to 0.42 for CH4 + CO2, likely reflecting different environmental conditions associated with the protocols used with the 2 measurement methods. The CH4/(CH4 + CO2) ratio was the most similar genetic trait measured using PAC (both lambs and ewes, 63% and 66% selection efficiency, respectively) compared with CH4 yield (g/kg DMI) measured using RC. These results suggest that PAC measurements have considerable value as a rapid low-cost method to estimate breeding values for CH4 emissions in sheep.


Assuntos
Dióxido de Carbono/metabolismo , Metano/metabolismo , Ovinos/metabolismo , Animais , Cruzamento , Dióxido de Carbono/análise , Feminino , Genótipo , Masculino , Medicago sativa , Metano/análise , Fenótipo , Respiração , Ovinos/genética
5.
Sci Rep ; 6: 39022, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27966600

RESUMO

Ruminants obtain nutrients from microbial fermentation of plant material, primarily in their rumen, a multilayered forestomach. How the different layers of the rumen wall respond to diet and influence microbial fermentation, and how these process are regulated, is not well understood. Gene expression correlation networks were constructed from full thickness rumen wall transcriptomes of 24 sheep fed two different amounts and qualities of a forage and measured for methane production. The network contained two major negatively correlated gene sub-networks predominantly representing the epithelial and muscle layers of the rumen wall. Within the epithelium sub-network gene clusters representing lipid/oxo-acid metabolism, general metabolism and proliferating and differentiating cells were identified. The expression of cell cycle and metabolic genes was positively correlated with dry matter intake, ruminal short chain fatty acid concentrations and methane production. A weak correlation between lipid/oxo-acid metabolism genes and methane yield was observed. Feed consumption level explained the majority of gene expression variation, particularly for the cell cycle genes. Many known stratified epithelium transcription factors had significantly enriched targets in the epithelial gene clusters. The expression patterns of the transcription factors and their targets in proliferating and differentiating skin is mirrored in the rumen, suggesting conservation of regulatory systems.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Epiteliais/metabolismo , Redes Reguladoras de Genes/fisiologia , Metano/biossíntese , Rúmen/metabolismo , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Ovinos
6.
Microbiology (Reading) ; 162(3): 459-465, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26813792

RESUMO

Only limited information is available on the roles of different rumen ciliate community types, first described by Eadie in 1962, in enteric methane (CH4) formation by their ruminant hosts. If the different types were differentially associated with CH4 formation, then ciliate community typing could be used to identify naturally high and low CH4-emitting animals. Here we measured the CH4 yields [g CH4 (kg feed dry matter intake, DMI)(-1)] of 118 sheep fed a standard pelleted lucerne diet at two different times, at least 2 weeks apart. There were significant differences (P < 2.2 × 10(-16), Wilcoxon rank sum test) in the CH4 yields (± sd) from sheep selected as high [16.7 ± 1.5 g CH4 (kg DMI)(-1)] and low emitters [13.3 ± 1.5 g CH4 (kg DMI)(-1)]. A rumen sample was collected after each of the two measurements, and ciliate composition was analysed using barcoded 454 Titanium pyrosequencing of 18S rRNA genes. The genera found, in order of mean relative abundance, were Epidinium, Entodinium, Dasytricha, Eudiplodinium, Polyplastron, Isotricha and Anoplodinium-Diplodinium, none of which was significantly correlated with the CH4 emissions ranking associated with the rumen sample. Ciliate communities naturally assembled into four types (A, AB, B and O), characterized by the presence and absence of key genera. There was no difference in CH4 yield between sheep that harboured different ciliate community types, suggesting that these did not underlie the natural variation in CH4 yields. Further research is needed to unravel the nature of interactions between ciliate protozoa and other rumen micro-organisms, which may ultimately lead to contrasting CH4 emission phenotypes.


Assuntos
Biota , Cilióforos/classificação , Cilióforos/metabolismo , Dieta/métodos , Medicago sativa/metabolismo , Metano/metabolismo , Rúmen/parasitologia , Ração Animal , Animais , Cilióforos/genética , Cilióforos/isolamento & purificação , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Ovinos
7.
PLoS One ; 9(7): e103171, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25078564

RESUMO

The potent greenhouse gas methane (CH4) is produced in the rumens of ruminant animals from hydrogen produced during microbial degradation of ingested feed. The natural animal-to-animal variation in the amount of CH4 emitted and the heritability of this trait offer a means for reducing CH4 emissions by selecting low-CH4 emitting animals for breeding. We demonstrate that differences in rumen microbial community structure are linked to high and low CH4 emissions in sheep. Bacterial community structures in 236 rumen samples from 118 high- and low-CH4 emitting sheep formed gradual transitions between three ruminotypes. Two of these (Q and S) were linked to significantly lower CH4 yields (14.4 and 13.6 g CH4/kg dry matter intake [DMI], respectively) than the third type (H; 15.9 g CH4/kg DMI; p<0.001). Low-CH4 ruminotype Q was associated with a significantly lower ruminal acetate to propionate ratio (3.7±0.4) than S (4.4±0.7; p<0.001) and H (4.3±0.5; p<0.001), and harbored high relative abundances of the propionate-producing Quinella ovalis. Low-CH4 ruminotype S was characterized by lactate- and succinate-producing Fibrobacter spp., Kandleria vitulina, Olsenella spp., Prevotella bryantii, and Sharpea azabuensis. High-CH4 ruminotype H had higher relative abundances of species belonging to Ruminococcus, other Ruminococcaceae, Lachnospiraceae, Catabacteriaceae, Coprococcus, other Clostridiales, Prevotella, other Bacteroidales, and Alphaproteobacteria, many of which are known to form significant amounts of hydrogen. We hypothesize that lower CH4 yields are the result of bacterial communities that ferment ingested feed to relatively less hydrogen, which results in less CH4 being formed.


Assuntos
Bactérias/metabolismo , Metano/metabolismo , Rúmen/microbiologia , Animais , Ovinos
8.
Genome Res ; 24(9): 1517-25, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24907284

RESUMO

Ruminant livestock represent the single largest anthropogenic source of the potent greenhouse gas methane, which is generated by methanogenic archaea residing in ruminant digestive tracts. While differences between individual animals of the same breed in the amount of methane produced have been observed, the basis for this variation remains to be elucidated. To explore the mechanistic basis of this methane production, we measured methane yields from 22 sheep, which revealed that methane yields are a reproducible, quantitative trait. Deep metagenomic and metatranscriptomic sequencing demonstrated a similar abundance of methanogens and methanogenesis pathway genes in high and low methane emitters. However, transcription of methanogenesis pathway genes was substantially increased in sheep with high methane yields. These results identify a discrete set of rumen methanogens whose methanogenesis pathway transcription profiles correlate with methane yields and provide new targets for CH4 mitigation at the levels of microbiota composition and transcriptional regulation.


Assuntos
Proteínas Arqueais/genética , Metagenoma , Metano/biossíntese , Microbiota , Rúmen/microbiologia , Ovinos/microbiologia , Animais , Archaea/genética , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Sequência de Bases , Dados de Sequência Molecular , Fenótipo , Característica Quantitativa Herdável , Rúmen/metabolismo , Ovinos/metabolismo , Transcriptoma
9.
Vet J ; 188(1): 11-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20347354

RESUMO

Methane emissions from livestock are a significant contributor to greenhouse gas emissions and have become a focus of research activities, especially in countries where agriculture is a major economic sector. Understanding the complexity of the rumen microbiota, including methane-producing Archaea, is in its infancy. There are currently no robust, reproducible and economically viable methods for reducing methane emissions from ruminants grazing on pasture and novel innovative strategies to diminish methane output from livestock are required. In this review, current approaches towards mitigation of methane in pastoral farming are summarised. Research strategies based on vaccination, enzyme inhibitors, phage, homoacetogens, defaunation, feed supplements, and animal selection are reviewed. Many approaches are currently being investigated, and it is likely that more than one strategy will be required to enable pastoral farming to lower its emissions of methane significantly. Different strategies may be suitable for different farming practices and systems.


Assuntos
Ração Animal , Criação de Animais Domésticos/métodos , Metano/metabolismo , Rúmen/metabolismo , Ruminantes/metabolismo , Animais , Bovinos , Digestão/fisiologia , Efeito Estufa , Poaceae , Rúmen/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA