Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542057

RESUMO

This study investigates the impact of SCs consumption by assessing the effects of three novel synthetic cannabinoids (SCs); MDMB-CHMINACA, 5F-ADB-PINACA, and APICA post-drug treatment. SCs are known for their rapid onset (<1 min) and prolonged duration (≥5 h). Therefore, this research aimed to assess behavioral responses and their correlation with endocannabinoids (ECs) accumulation in the hippocampus, and EC's metabolic enzymes alteration at different timeframes (1-3-5-h) following drug administration. Different extents of locomotive disruption and sustained anxiety-like symptoms were observed throughout all-encompassing timeframes of drug administration. Notably, MDMB-CHMINACA induced significant memory impairment at 1 and 3 h. Elevated levels of anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) were detected 1 h post-MDMB-CHMINACA and 5F-ADB-PINACA administration. Reduced mRNA expression levels of fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL) (AEA and 2-AG degrading enzymes, respectively), and brain-derived neurotrophic factor (BDNF) occurred at 1 h, with FAAH levels remaining reduced at 3 h. These findings suggest a connection between increased EC content and decreased BDNF expression following SC exposure. Cognitive disruption, particularly motor coordination decline and progressive loss manifested in a time-dependent manner across all the analyzed SCs. Our study highlights the importance of adopting a temporal framework when assessing the effects of SCs.


Assuntos
Canabinoides , Drogas Ilícitas , Endocanabinoides , Fator Neurotrófico Derivado do Encéfalo/genética , Canabinoides/farmacologia , Canabinoides/metabolismo , Drogas Ilícitas/metabolismo
2.
Sci Rep ; 11(1): 18532, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535743

RESUMO

Leydig cells in the testes produce testosterone in the presence of gonadotropins. Therefore, male testosterone levels must oscillate within a healthy spectrum, given that elevated testosterone levels augment the risk of cardiovascular disorders. We observed that the expression of death-associated protein-like 1 (DAPL1), which is involved in the early stages of epithelial differentiation and apoptosis, is considerably higher in the testes of sexually mature mice than in other tissues. Accordingly, Dapl1-null mice were constructed to evaluate this variation. Notably, in these mice, the testicular levels of steroidogenic acute regulatory protein (StAR) and serum testosterone levels were significantly elevated on postnatal day 49. The findings were confirmed in vitro using I-10 mouse testis-derived tumor cells. The in vivo and in vitro data revealed the DAPL1-regulated the expression of StAR involving altered transcription of critical proteins in the protein kinase A and CREB/CREM pathways in Leydig cells. The collective findings implicate DAPL1 as an important factor for steroidogenesis regulation, and DAPL1 deregulation may be related to high endogenous levels of testosterone.


Assuntos
Células Intersticiais do Testículo/metabolismo , Testosterona/metabolismo , Animais , Linhagem Celular , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA