RESUMO
The exponential growth of electronic waste (e-waste) has raised significant environmental concerns, with projections indicating a surge to 74.7 million metric tons of e-waste generated by 2030. Waste printed circuit boards (WPCBs), constituting approximately 10% of all e-waste, are particularly intriguing due to their high content of valuable metals and rare earth elements. However, the presence of hazardous elements necessitates sustainable recycling strategies. This review explores innovative approaches to sustainable metal nanoparticle synthesis from WPCBs. Efficient metal recovery from WPCBs begins with disassembly and the utilization of advanced equipment for optimal separation. Various pretreatment techniques, including selective leaching and magnetic separation, enhance metal recovery efficiency. Green recovery systems such as biohydrometallurgy offer eco-friendly alternatives, with high selectivity. Converting metal ions into nanoparticles involves concentration and transformation methods like chemical precipitation, electrowinning, and dialysis. These methods are vital for transforming recovered metal ions into valuable nanoparticles, promoting sustainable resource utilization and eco-friendly e-waste recycling. Sustainable green synthesis methods utilizing natural sources, including microorganisms and plants, are discussed, with a focus on their applications in producing well-defined nanoparticles. Nanoparticles derived from WPCBs find valuable applications in drug delivery, microelectronics, antimicrobial materials, environmental remediation, diagnostics, catalysis, agriculture, etc. They contribute to eco-friendly wastewater treatment, photocatalysis, protective coatings, and biomedicine. The important implications of this review lie in its identification of sustainable metal nanoparticle synthesis from WPCBs as a pivotal solution to e-waste environmental concerns, paving the way for eco-friendly recycling practices and the supply of valuable materials for diverse industrial applications.
RESUMO
Resumo A drenagem ácida de mina da mineração de carvão é um dos mais graves problemas ambientais que existem atualmente e é caracterizada, principalmente, por apresentar elevada acidez, baixo pH e expressiva concentração de metais tóxicos, como ferro, Mn e muitos outros, afetando diretamente mananciais e rios. Em busca de uma alternativa que pudesse melhorar, de forma eficiente e econômica, os níveis de acidez e ferro da água impactada pela drenagem ácida de mina, foi desenvolvido um adsorvente geopolimérico à base de materiais residuais da indústria cerâmica e do beneficiamento de arroz (cinzas da casca de arroz). O objetivo desta pesquisa foi avaliar a eficiência do geopolímero na remoção de íons ferro em água contaminada com drenagem ácida de mina. Foram avaliados aspectos de dosagem do adsorvente, efeito da temperatura, concentrações iniciais de ferro, cinética e parâmetros termodinâmicos do processo de adsorção. O percentual de ferro removido foi de 92,76%, à temperatura de 25 °C, em um período de 20 min, com uma concentração de adsorvente de 4 g L-1. A capacidade máxima de adsorção de ferro pelo geopolímero foi de 7,18 mg.g-1. O principal mecanismo de adsorção ocorreu em razão da quimissorção, que segue o modelo cinético de pseudossegunda ordem. O geopolímero se mostrou como uma alternativa eficiente ao tratamento de água contaminada com drenagem ácida de mina.
Abstract Acid mine drainage is a worldwide problem and is characterized by high acidity, low pH and expressive concentration of heavy metals, such as iron, Mn and many others, directly affecting water sources and rivers. In search of an alternative that could efficiently and economically improve the levels of acidity and water iron impacted by acid mine drainage, a geopolymeric adsorbent based on residual materials was developed: from the ceramic industry and rice processing (rice husk ash). In this work, it was evaluated the efficiency of the geopolymer in removing iron ions in water contaminated with acid mine drainage. Aspects of adsorbent dosage, temperature effect, initial iron concentrations, kinetics and thermodynamic parameters of the adsorption process were evaluated. The percentage of iron removed was 92.76%, at a temperature of 25 °C, for 20 min, with an adsorbent concentration of 4 g L-1, with the maximum capacity for adsorption of iron by the geopolymer being 7.18 mg.g-1. The main mechanism of adsorption occurred due to chemisorption, which follows the kinetic model of pseudo-second order. Geopolymer appears potentially useful an efficient alternative in the treatment of water contaminated with acid mine drainage.