Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746216

RESUMO

Neutrophils (PMNs) reside as a marginated pool within the vasculature, ready for deployment during infection. However, how endothelial cells (ECs) control PMN extravasation and activation to strengthen tissue homeostasis remains ill-defined. Here, we found that the vascular ETS-related gene (ERG) is a generalized mechanism regulating PMN activity in preclinical tissue injury models and human patients. We show that ERG loss in ECs rewired PMN-transcriptome, enriched for genes associated with the CXCR2-CXCR4 signaling. Rewired PMNs compromise mice survival after pneumonia and induced lung vascular inflammatory injury following adoptive transfer into naïve mice, indicating their longevity and inflammatory activity memory. Mechanistically, EC-ERG restricted PMN extravasation and activation by upregulating the deubiquitinase A20 and downregulating the NFκB-IL8 cascade. Rescuing A20 in EC-Erg -/- endothelium or suppressing PMN-CXCR2 signaling rescued EC control of PMN activation. Findings deepen our understanding of EC control of PMN-mediated inflammation, offering potential avenues for targeting various inflammatory diseases. Highlights: ERG regulates trans-endothelial neutrophil (PMN) extravasation, retention, and activationLoss of endothelial (EC) ERG rewires PMN-transcriptomeAdopted transfer of rewired PMNs causes inflammation in a naïve mouse ERG transcribes A20 and suppresses CXCR2 function to inactivate PMNs. In brief/blurb: The authors investigated how vascular endothelial cells (EC) control polymorphonuclear neutrophil (PMN) extravasation, retention, and activation to strengthen tissue homeostasis. They showed that EC-ERG controls PMN transcriptome into an anti-adhesive and anti-inflammatory lineage by synthesizing A20 and suppressing PMNs-CXCR2 signaling, defining EC-ERG as a target for preventing neutrophilic inflammatory injury.

2.
Circ Res ; 134(5): 482-501, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38323474

RESUMO

BACKGROUND: Mitochondrial dysfunction is a primary driver of cardiac contractile failure; yet, the cross talk between mitochondrial energetics and signaling regulation remains obscure. Ponatinib, a tyrosine kinase inhibitor used to treat chronic myeloid leukemia, is among the most cardiotoxic tyrosine kinase inhibitors and causes mitochondrial dysfunction. Whether ponatinib-induced mitochondrial dysfunction triggers the integrated stress response (ISR) to induce ponatinib-induced cardiotoxicity remains to be determined. METHODS: Using human induced pluripotent stem cells-derived cardiomyocytes and a recently developed mouse model of ponatinib-induced cardiotoxicity, we performed proteomic analysis, molecular and biochemical assays to investigate the relationship between ponatinib-induced mitochondrial stress and ISR and their role in promoting ponatinib-induced cardiotoxicity. RESULTS: Proteomic analysis revealed that ponatinib activated the ISR in cardiac cells. We identified GCN2 (general control nonderepressible 2) as the eIF2α (eukaryotic translation initiation factor 2α) kinase responsible for relaying mitochondrial stress signals to trigger the primary ISR effector-ATF4 (activating transcription factor 4), upon ponatinib exposure. Mechanistically, ponatinib treatment exerted inhibitory effects on ATP synthase activity and reduced its expression levels resulting in ATP deficits. Perturbed mitochondrial function resulting in ATP deficits then acts as a trigger of GCN2-mediated ISR activation, effects that were negated by nicotinamide mononucleotide, an NAD+ precursor, supplementation. Genetic inhibition of ATP synthase also activated GCN2. Interestingly, we showed that the decreased abundance of ATP also facilitated direct binding of ponatinib to GCN2, unexpectedly causing its activation most likely because of a conformational change in its structure. Importantly, administering an ISR inhibitor protected human induced pluripotent stem cell-derived cardiomyocytes against ponatinib. Ponatinib-treated mice also exhibited reduced cardiac function, effects that were attenuated upon systemic ISRIB administration. Importantly, ISRIB does not affect the antitumor effects of ponatinib in vitro. CONCLUSIONS: Neutralizing ISR hyperactivation could prevent or reverse ponatinib-induced cardiotoxicity. The findings that compromised ATP production potentiates GCN2-mediated ISR activation have broad implications across various cardiac diseases. Our results also highlight an unanticipated role of ponatinib in causing direct activation of a kinase target despite its role as an ATP-competitive kinase inhibitor.


Assuntos
Imidazóis , Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Piridazinas , Humanos , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Cardiotoxicidade/patologia , Proteômica , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Inibidores de Proteínas Quinases/toxicidade , Doenças Mitocondriais/patologia , Trifosfato de Adenosina
4.
Cardiovasc Res ; 119(10): 1997-2013, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267414

RESUMO

AIMS: Novel cancer therapies leading to increased survivorship of cancer patients have been negated by a concomitant rise in cancer therapies-related cardiovascular toxicities. Sunitinib, a first line multi-receptor tyrosine kinase inhibitor, has been reported to cause vascular dysfunction although the initiating mechanisms contributing to this side effect remain unknown. Long non-coding RNAs (lncRNAs) are emerging regulators of biological processes in endothelial cells (ECs); however, their roles in cancer therapies-related vascular toxicities remain underexplored. METHODS AND RESULTS: We performed lncRNA expression profiling to identify potential lncRNAs that are dysregulated in human-induced pluripotent stem cell-derived ECs (iPSC-ECs) treated with sunitinib. We show that the lncRNA hyaluronan synthase 2 antisense 1 (HAS2-AS1) is significantly diminished in sunitinib-treated iPSC-ECs. Sunitinib was found to down-regulate HAS2-AS1 by an epigenetic mechanism involving hypermethylation. Depletion of HAS2-AS1 recapitulated sunitinib-induced detrimental effects on iPSC-ECs, whereas CRISPR-mediated activation of HAS2-AS1 reversed sunitinib-induced dysfunction. We confirmed that HAS2-AS1 stabilizes the expression of its sense gene HAS2 via an RNA/mRNA heteroduplex formation. Knockdown of HAS2-AS1 led to reduced synthesis of hyaluronic acid (HA) and up-regulation of ADAMTS5, an enzyme involved in extracellular matrix degradation, resulting in disruption of the endothelial glycocalyx which is critical for ECs. In vivo, sunitinib-treated mice showed reduced coronary flow reserve, accompanied by a reduction in Has2os and degradation of the endothelial glycocalyx. Finally, we identified that treatment with high molecular-weight HA can prevent the deleterious effects of sunitinib both in vitro and in vivo by preserving the endothelial glycocalyx. CONCLUSIONS: Our findings highlight the importance of lncRNA-mediated regulation of the endothelial glycocalyx as an important determinant of sunitinib-induced vascular toxicity and reveal potential novel therapeutic avenues to attenuate sunitinib-induced vascular dysfunction.


Assuntos
RNA Longo não Codificante , Humanos , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Glicocálix/metabolismo , Células Endoteliais/metabolismo , Sunitinibe/toxicidade , Sunitinibe/metabolismo
5.
bioRxiv ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36711927

RESUMO

Functional stromal cells are known to support bone marrow regeneration after chemotherapy or radiation-induced injury to prevent prolonged myelosuppression. However, it is not known how stromal cells within the bone marrow are regenerated after injury. We have utilized a whole bone transplantation model that mimics the initial bone marrow necrosis and fatty infiltration that is seen after bone marrow injury and subsequent recovery. We demonstrate that periosteal skeletal stem cells (P-SSCs) can migrate into the bone marrow and contribute to stromal regeneration and hematopoietic recovery. Once in the bone marrow, P-SSCs are phenotypically and functionally reprogrammed into bone marrow mesenchymal stem cells (BM-MSCs), expressing high levels of hematopoietic stem cell (HSC) niche factors, such as Cxcl12 and Kitl. Additionally, our results further indicate that P-SSCs are more resistant to acute stress than BM-MSCs. Here, we report a new function of P-SSCs, highlighting their major plasticity and the role of the periosteum as a potential source of BM-MSCs following acute bone marrow injury.

6.
Adv Exp Med Biol ; 1442: 17-28, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38228956

RESUMO

Hematopoietic stem cells (HSCs) are maintained in the bone marrow microenvironment, also known as the niche, that regulates their proliferation, self-renewal, and differentiation. In this chapter, we will introduce the history of HSC niche research and review the interdependencies between HSCs and their niches. We will further highlight recent advances in our understanding of HSC heterogeneity with regard to HSC subpopulations and their interacting cellular and molecular bone marrow niche constituents.


Assuntos
Medula Óssea , Nicho de Células-Tronco , Nicho de Células-Tronco/fisiologia , Células-Tronco Hematopoéticas , Diferenciação Celular/fisiologia , Células da Medula Óssea
7.
Proc Natl Acad Sci U S A ; 119(35): e2121251119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994670

RESUMO

GCN2 (general control nonderepressible 2) is a serine/threonine-protein kinase that controls messenger RNA translation in response to amino acid availability and ribosome stalling. Here, we show that GCN2 controls erythrocyte clearance and iron recycling during stress. Our data highlight the importance of liver macrophages as the primary cell type mediating these effects. During different stress conditions, such as hemolysis, amino acid deficiency or hypoxia, GCN2 knockout (GCN2-/-) mice displayed resistance to anemia compared with wild-type (GCN2+/+) mice. GCN2-/- liver macrophages exhibited defective erythrophagocytosis and lysosome maturation. Molecular analysis of GCN2-/- cells demonstrated that the ATF4-NRF2 pathway is a critical downstream mediator of GCN2 in regulating red blood cell clearance and iron recycling.


Assuntos
Aminoácidos , Eritrócitos , Ferro , Fígado , Macrófagos , Proteínas Serina-Treonina Quinases , Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos/deficiência , Aminoácidos/metabolismo , Anemia/metabolismo , Animais , Citofagocitose , Eritrócitos/metabolismo , Deleção de Genes , Hemólise , Hipóxia/metabolismo , Ferro/metabolismo , Fígado/citologia , Lisossomos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico
8.
Nat Cell Biol ; 24(3): 290-298, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35210567

RESUMO

Haematopoietic stem cells (HSCs) home to the bone marrow via, in part, interactions with vascular cell adhesion molecule-1 (VCAM1)1-3. Once in the bone marrow, HSCs are vetted by perivascular phagocytes to ensure their self-integrity. Here we show that VCAM1 is also expressed on healthy HSCs and upregulated on leukaemic stem cells (LSCs), where it serves as a quality-control checkpoint for entry into bone marrow by providing 'don't-eat-me' stamping in the context of major histocompatibility complex class-I (MHC-I) presentation. Although haplotype-mismatched HSCs can engraft, Vcam1 deletion, in the setting of haplotype mismatch, leads to impaired haematopoietic recovery due to HSC clearance by mononuclear phagocytes. Mechanistically, VCAM1 'don't-eat-me' activity is regulated by ß2-microglobulin MHC presentation on HSCs and paired Ig-like receptor-B (PIR-B) on phagocytes. VCAM1 is also used by cancer cells to escape immune detection as its expression is upregulated in multiple cancers, including acute myeloid leukaemia (AML), where high expression associates with poor prognosis. In AML, VCAM1 promotes disease progression, whereas VCAM1 inhibition or deletion reduces leukaemia burden and extends survival. These results suggest that VCAM1 engagement regulates a critical immune-checkpoint gate in the bone marrow, and offers an alternative strategy to eliminate cancer cells via modulation of the innate immune tolerance.


Assuntos
Leucemia Mieloide Aguda , Molécula 1 de Adesão de Célula Vascular , Medula Óssea , Células-Tronco Hematopoéticas/metabolismo , Humanos , Tolerância Imunológica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
9.
Cell Stem Cell ; 29(2): 232-247.e7, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065706

RESUMO

Host microbiota crosstalk is essential for the production and functional modulation of blood-cell lineages. Whether, and if so how, the microbiota influences hematopoietic stem cells (HSCs) is unclear. Here, we show that the microbiota regulates HSC self-renewal and differentiation under stress conditions by modulating local iron availability in the bone marrow (BM). In microbiota-depleted mice, HSC self-renewal was enhanced during regeneration, while the commitment toward differentiation was dramatically compromised. Mechanistically, microbiota depletion selectively impaired the recycling of red blood cells (RBCs) by BM macrophages, resulting in reduced local iron levels without affecting systemic iron homeostasis. Limiting iron availability in food (in vivo) or in culture (ex vivo), or by CD169+ macrophage depletion, enhanced HSC self-renewal and expansion. These results reveal an intricate interplay between the microbiota, macrophages, and iron, and their essential roles in regulating critical HSC fate decisions under stress.


Assuntos
Medula Óssea , Microbiota , Animais , Medula Óssea/fisiologia , Diferenciação Celular , Células-Tronco Hematopoéticas , Ferro , Camundongos
10.
Front Immunol ; 12: 775128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721441

RESUMO

Acute myeloid leukemia (AML) is one of the most common types of leukemia in adults. While complete remission can be obtained with intensive chemotherapy in young and fit patients, relapse is frequent and prognosis remains poor. Leukemic cells are thought to arise from a pool of leukemic stem cells (LSCs) which sit at the top of the hierarchy. Since their discovery, more than 30 years ago, LSCs have been a topic of intense research and their identification paved the way for cancer stem cell research. LSCs are defined by their ability to self-renew, to engraft into recipient mice and to give rise to leukemia. Compared to healthy hematopoietic stem cells (HSCs), LSCs display specific mutations, epigenetic modifications, and a specific metabolic profile. LSCs are usually considered resistant to chemotherapy and are therefore the drivers of relapse. Similar to their HSC counterpart, LSCs reside in a highly specialized microenvironment referred to as the "niche". Bidirectional interactions between leukemic cells and the microenvironment favor leukemic progression at the expense of healthy hematopoiesis. Within the niche, LSCs are thought to be protected from genotoxic insults. Improvement in our understanding of LSC gene expression profile and phenotype has led to the development of prognosis signatures and the identification of potential therapeutic targets. In this review, we will discuss LSC biology in the context of their specific microenvironment and how a better understanding of LSC niche biology could pave the way for new therapies that target AML.


Assuntos
Suscetibilidade a Doenças , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Biomarcadores Tumorais , Medula Óssea/metabolismo , Medula Óssea/patologia , Gerenciamento Clínico , Heterogeneidade Genética , Predisposição Genética para Doença , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fenótipo , Nicho de Células-Tronco , Microambiente Tumoral
13.
Nat Cell Biol ; 23(10): 1049-1050, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34561616
15.
Nat Commun ; 12(1): 2522, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947846

RESUMO

Haematopoietic stem cells (HSCs) tightly regulate their quiescence, proliferation, and differentiation to generate blood cells during the entire lifetime. The mechanisms by which these critical activities are balanced are still unclear. Here, we report that Macrophage-Erythroblast Attacher (MAEA, also known as EMP), a receptor thus far only identified in erythroblastic island, is a membrane-associated E3 ubiquitin ligase subunit essential for HSC maintenance and lymphoid potential. Maea is highly expressed in HSCs and its deletion in mice severely impairs HSC quiescence and leads to a lethal myeloproliferative syndrome. Mechanistically, we have found that the surface expression of several haematopoietic cytokine receptors (e.g. MPL, FLT3) is stabilised in the absence of Maea, thereby prolonging their intracellular signalling. This is associated with impaired autophagy flux in HSCs but not in mature haematopoietic cells. Administration of receptor kinase inhibitor or autophagy-inducing compounds rescues the functional defects of Maea-deficient HSCs. Our results suggest that MAEA provides E3 ubiquitin ligase activity, guarding HSC function by restricting cytokine receptor signalling via autophagy.


Assuntos
Autofagossomos/genética , Autofagia/genética , Moléculas de Adesão Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Autofagia/efeitos dos fármacos , Moléculas de Adesão Celular/genética , Proteínas do Citoesqueleto/genética , Perfilação da Expressão Gênica , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Células-Tronco Hematopoéticas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Estabilidade Proteica , Receptores de Trombopoetina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Tirosina Quinase 3 Semelhante a fms/metabolismo
16.
Sci Rep ; 11(1): 6571, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753857

RESUMO

The prostate is a hormone-responsive organ where testicular androgens drive the proliferation and survival of prostatic cells, ensuring the development and functioning of this gland throughout life. Androgen deprivation therapy leads to apoptosis of prostatic cells and organ regression, and is a cornerstone of prostate cancer and benign prostatic hypertrophy treatment. For several decades, androgen deprivation has been used as an adjuvant to external beam radiotherapy, however, emerging data suggests that the low rates of epithelial proliferation in the castrated prostate imparts radio-resistance. As proliferating cells exhibit increased sensitivity to radiation, we hypothesized that short bursts of synchronized epithelial proliferation, which can be achieved by exogeneous testosterone supplementation prior to targeted high-dose radiation, would maximize sustained prostate ablation, while minimizing damage to surrounding tissues. To test this hypothesis, we designed a novel computed-tomography (CT)-guided stereotactic prostate radiation therapy (CT-SPRT) technique to deliver a single high-dose 25 Gy fraction of X-ray radiation. Sustained prostatic cell ablation was assessed post CT-SPRT by measuring prostate weight, epithelial cell number, and relative contributions of luminal and basal epithelial populations in control and testosterone-pretreated glands. CT-SPRT was safely delivered with no observed damage to surrounding rectal and bladder tissues. Importantly, castrated mice that received a pulse of testosterone to induce synchronous cell proliferation prior to CT-SPRT exhibited significant sustained gland ablation compared to control mice. These results provide new insights in stereotactic radiotherapy sensitivity to maximize prostatic cell ablation and improve our understanding of prostate gland regeneration that can potentially lead to improved non-invasive therapies for benign prostatic hypertrophy and prostate cancer.


Assuntos
Modelos Animais de Doenças , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/terapia , Radiocirurgia , Radioterapia Guiada por Imagem , Tomografia Computadorizada por Raios X , Animais , Proliferação de Células , Meios de Contraste/administração & dosagem , Gerenciamento Clínico , Humanos , Masculino , Camundongos , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/metabolismo , Radiocirurgia/métodos , Radioterapia Guiada por Imagem/métodos , Testosterona/metabolismo , Tomografia Computadorizada por Raios X/métodos
17.
Methods Mol Biol ; 2185: 373-382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33165861

RESUMO

Although immunohistochemistry of tissue sections has been the gold standard for analyzing tissue structure and cellular localization, this approach has significant shortcomings when it comes to analyzing complex and heterogeneous tissues such as the bone marrow with rare cells like hematopoietic stem cells (HSCs). Hence, studying rare cells and their relationship with the surrounding heterogenous microenvironment requires visualization of specifically labeled cells within large intact tissues in three dimensions. Here, we describe a whole mount sternal bone marrow imaging method which has enabled detailed quantitative and qualitative analysis of rare HSCs within the sternal tissue. The methodology is broadly applicable for examining the 3D architecture of niche cells in relation to HSCs.


Assuntos
Medula Óssea , Diagnóstico por Imagem , Células-Tronco Hematopoéticas/citologia , Nicho de Células-Tronco , Animais , Feminino , Masculino , Camundongos
18.
J Neuropsychol ; 14(1): 154-164, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30511375

RESUMO

Semantic meaning can be extracted from pictures presented very briefly, in the order of tens of milliseconds. This ultra-rapid categorization processing appears to respect a coarse-to-fine path where lower level representations of concepts, or more detailed information, need additional time. We question whether variations in the levels of typicality of the target-item would implicate additional processing for correct classification, both in neurotypical (NT) individuals and with autism spectrum disorder (ASD). Previous research in ASD points out that atypical exemplars of a category might be abnormally processed (e.g., longer times in identifying a penguin as a bird), an observation that we further tested with a rapid serial visual presentation (RSVP) task. In this study, we applied a RSVP task, with four different presentation times (13, 27, 50, and 80 ms) and with typical and atypical exemplars to a group of NT individuals and a sample of individuals with ASD. We found, overall, a strong effect of typicality with a higher detection rate for typical items. In addition, we observed a group × typicality × duration interaction. We interpret these findings in the light of the competences of the feedforward sweep of information through our visual system.


Assuntos
Transtorno do Espectro Autista/psicologia , Tempo de Reação , Semântica , Adulto , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Adulto Jovem
20.
Nature ; 569(7755): 222-228, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30971824

RESUMO

The bone marrow microenvironment has a key role in regulating haematopoiesis, but its molecular complexity and response to stress are incompletely understood. Here we map the transcriptional landscape of mouse bone marrow vascular, perivascular and osteoblast cell populations at single-cell resolution, both at homeostasis and under conditions of stress-induced haematopoiesis. This analysis revealed previously unappreciated levels of cellular heterogeneity within the bone marrow niche and resolved cellular sources of pro-haematopoietic growth factors, chemokines and membrane-bound ligands. Our studies demonstrate a considerable transcriptional remodelling of niche elements under stress conditions, including an adipocytic skewing of perivascular cells. Among the stress-induced changes, we observed that vascular Notch delta-like ligands (encoded by Dll1 and Dll4) were downregulated. In the absence of vascular Dll4, haematopoietic stem cells prematurely induced a myeloid transcriptional program. These findings refine our understanding of the cellular architecture of the bone marrow niche, reveal a dynamic and heterogeneous molecular landscape that is highly sensitive to stress and illustrate the utility of single-cell transcriptomic data in evaluating the regulation of haematopoiesis by discrete niche populations.


Assuntos
Medula Óssea/irrigação sanguínea , Microambiente Celular , Hematopoese , Células-Tronco Hematopoéticas , Análise de Célula Única , Nicho de Células-Tronco , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular , Linhagem da Célula , Endotélio Vascular/citologia , Feminino , Regulação da Expressão Gênica , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Células Mieloides/citologia , Células Mieloides/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , RNA-Seq , Receptores Notch/metabolismo , Nicho de Células-Tronco/genética , Estresse Fisiológico/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA